1
|
Shatalina E, Whitehurst TS, Onwordi EC, Gilbert BJ, Rizzo G, Whittington A, Mansur A, Tsukada H, Marques TR, Natesan S, Rabiner EA, Wall MB, Howes OD. Mitochondrial complex I density is associated with IQ and cognition in cognitively healthy adults: an in vivo [ 18F]BCPP-EF PET study. EJNMMI Res 2024; 14:41. [PMID: 38632153 PMCID: PMC11024075 DOI: 10.1186/s13550-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/23/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mitochondrial function plays a key role in regulating neurotransmission and may contribute to general intelligence. Mitochondrial complex I (MC-I) is the largest enzyme of the respiratory chain. Recently, it has become possible to measure MC-I distribution in vivo, using a novel positron emission tomography tracer [18F]BCPP-EF, thus, we set out to investigate the association between MC-I distribution and measures of cognitive function in the living healthy brain. RESULTS Analyses were performed in a voxel-wise manner and identified significant associations between [18F]BCPP-EF DVRCS-1 in the precentral gyrus and parietal lobes and WAIS-IV predicted IQ, WAIS-IV arithmetic and WAIS-IV symbol-digit substitution scores (voxel-wise Pearson's correlation coefficients transformed to Z-scores, thresholded at Z = 2.3 family-wise cluster correction at p < 0.05, n = 16). Arithmetic scores were associated with middle frontal and post-central gyri tracer uptake, symbol-digit substitution scores were associated with precentral gyrus tracer uptake. RAVLT recognition scores were associated with [18F]BCPP-EF DVRCS-1 in the middle frontal gyrus, post-central gyrus, occipital and parietal regions (n = 20). CONCLUSIONS Taken together, our findings support the theory that mitochondrial function may contribute to general intelligence and indicate that interindividual differences in MC-I should be a key consideration for research into mitochondrial dysfunction in conditions with cognitive impairment.
Collapse
Affiliation(s)
- Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Kings College London, London, UK.
| | - Thomas S Whitehurst
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Kings College London, London, UK
| | - Ellis Chika Onwordi
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Kings College London, London, UK
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | | | | | | | | | | - Tiago Reis Marques
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Kings College London, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Kings College London, London, UK
| | - Eugenii A Rabiner
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Kings College London, London, UK
- Invicro, London, UK
| | - Matthew B Wall
- Faculty of Medicine, Imperial College London, London, UK
- Invicro, London, UK
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), Kings College London, London, UK
| |
Collapse
|
2
|
Artificial neurovascular network (ANVN) to study the accuracy vs. efficiency trade-off in an energy dependent neural network. Sci Rep 2021; 11:13808. [PMID: 34226588 PMCID: PMC8257640 DOI: 10.1038/s41598-021-92661-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023] Open
Abstract
Artificial feedforward neural networks perform a wide variety of classification and function approximation tasks with high accuracy. Unlike their artificial counterparts, biological neural networks require a supply of adequate energy delivered to single neurons by a network of cerebral microvessels. Since energy is a limited resource, a natural question is whether the cerebrovascular network is capable of ensuring maximum performance of the neural network while consuming minimum energy? Should the cerebrovascular network also be trained, along with the neural network, to achieve such an optimum? In order to answer the above questions in a simplified modeling setting, we constructed an Artificial Neurovascular Network (ANVN) comprising a multilayered perceptron (MLP) connected to a vascular tree structure. The root node of the vascular tree structure is connected to an energy source, and the terminal nodes of the vascular tree supply energy to the hidden neurons of the MLP. The energy delivered by the terminal vascular nodes to the hidden neurons determines the biases of the hidden neurons. The "weights" on the branches of the vascular tree depict the energy distribution from the parent node to the child nodes. The vascular weights are updated by a kind of "backpropagation" of the energy demand error generated by the hidden neurons. We observed that higher performance was achieved at lower energy levels when the vascular network was also trained along with the neural network. This indicates that the vascular network needs to be trained to ensure efficient neural performance. We observed that below a certain network size, the energetic dynamics of the network in the per capita energy consumption vs. classification accuracy space approaches a fixed-point attractor for various initial conditions. Once the number of hidden neurons increases beyond a threshold, the fixed point appears to vanish, giving place to a line of attractors. The model also showed that when there is a limited resource, the energy consumption of neurons is strongly correlated to their individual contribution to the network's performance.
Collapse
|
3
|
Mitochondrial Functioning and the Relations among Health, Cognition, and Aging: Where Cell Biology Meets Cognitive Science. Int J Mol Sci 2021; 22:ijms22073562. [PMID: 33808109 PMCID: PMC8037956 DOI: 10.3390/ijms22073562] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cognitive scientists have determined that there is a set of mechanisms common to all sensory, perceptual, and cognitive abilities and correlated with age- and disease-related declines in cognition. These mechanisms also contribute to the development and functional coherence of the large-scale brain networks that support complex forms of cognition. At the same time, these brain and cognitive patterns are correlated with myriad health outcomes, indicating that at least some of the underlying mechanisms are common to all biological systems. Mitochondrial functions, including cellular energy production and control of oxidative stress, among others, are well situated to explain the relations among the brain, cognition, and health. Here, I provide an overview of the relations among cognitive abilities, associated brain networks, and the importance of mitochondrial energy production for their functioning. These are then linked to the relations between cognition, health, and aging. The discussion closes with implications for better integrating research in cognitive science and cell biology in the context of developing more sensitive measures of age- and disease-related declines in cognition.
Collapse
|
4
|
Geary DC. Mitochondrial Functions, Cognition, and the Evolution of Intelligence: Reply to Commentaries and Moving Forward. J Intell 2020; 8:E42. [PMID: 33302466 PMCID: PMC7768403 DOI: 10.3390/jintelligence8040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
In response to commentaries, I address questions regarding the proposal that general intelligence (g) is a manifestation of the functioning of intramodular and intermodular brain networks undergirded by the efficiency of mitochondrial functioning (Geary 2018). The core issues include the relative contribution of mitochondrial functioning to individual differences in g; studies that can be used to test associated hypotheses; and, the adaptive function of intelligence from an evolutionary perspective. I attempt to address these and related issues, as well as note areas in which other issues remain to be addressed.
Collapse
Affiliation(s)
- David C Geary
- Department of Psychological Sciences, Interdisciplinary Neuroscience, University of Missouri, Columbia, MO 65211-2500, USA
| |
Collapse
|
5
|
Debatin T. Neuroenergetics and "General Intelligence": A Systems Biology Perspective. J Intell 2020; 8:jintelligence8030031. [PMID: 32858851 PMCID: PMC7555089 DOI: 10.3390/jintelligence8030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
David C. Geary proposed the efficiency of mitochondrial processes, especially the production of energy, as the most fundamental biological mechanism contributing to individual differences in general intelligence (g). While the efficiency of mitochondrial functioning is undoubtedly an important and highly interesting factor, I outline several reasons why other main factors of neuroenergetics should not be neglected and why a systems biology perspective should be adopted. There are many advantages for research on intelligence to focus on individual differences in the capability of the overall brain metabolism system to produce the energy currency adenosine triphosphate (ATP): higher predictive strength than single mechanisms, diverse possibilities for experimental manipulation, measurement with existing techniques and answers to unresolved questions because of multiple realizability. Many of these aspects are especially important for research on developmental processes and the building and refining of brain networks for adaptation. Focusing too much on single parts of the system, like the efficiency of mitochondrial functioning, carries the danger of missing important information about the role of neuroenergetics in intelligence and valuable research opportunities.
Collapse
Affiliation(s)
- Tobias Debatin
- Department of Educational Sciences, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
6
|
The Evidence for Geary's Theory on the Role of Mitochondrial Functioning in Human Intelligence Is Not Entirely Convincing. J Intell 2020; 8:jintelligence8030029. [PMID: 32698405 PMCID: PMC7555447 DOI: 10.3390/jintelligence8030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Abstract
Geary (2018, 2019) suggested that heritable and environmentally caused differences in mitochondrial functioning affect the integrity and efficiency of neurons and supporting glia cells and may thus contribute to individual differences in higher-order cognitive functioning and physical health. In our comment, we want to pose three questions aimed at different aspects of Geary’s theory that critically evaluate his theory in the light of evidence from neurocognitive, cognitive enhancement, and behavioral genetics research. We question (1) if Geary’s theory explains why certain cognitive processes show a stronger age-related decline than others; (2) if intervention studies in healthy younger adults support the claim that variation in mitochondrial functioning underlies variation in human intelligence; and (3) if predictions arising from the matrilineal heredity of mitochondrial DNA are supported by behavioral genetics research. We come to the conclusion that there are likely many more biological and social factors contributing to variation in human intelligence than mitochondrial functioning.
Collapse
|
8
|
Matzel LD, Crawford DW, Sauce B. Déjà vu All Over Again: A Unitary Biological Mechanism for Intelligence Is (Probably) Untenable. J Intell 2020; 8:jintelligence8020024. [PMID: 32498282 PMCID: PMC7713016 DOI: 10.3390/jintelligence8020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Nearly a century ago, Spearman proposed that “specific factors can be regarded as the ‘nuts and bolts’ of cognitive performance…, while the general factor is the mental energy available to power the specific engines”. Geary (2018; 2019) takes Spearman’s analogy of “mental energy” quite literally and doubles-down on the notion by proposing that a unitary energy source, the mitochondria, explains variations in both cognitive function and health-related outcomes. This idea is reminiscent of many earlier attempts to describe a low-level biological determinant of general intelligence. While Geary does an admirable job developing an innovative theory with specific and testable predictions, this new theory suffers many of the shortcomings of previous attempts at similar goals. We argue that Geary’s theory is generally implausible, and does not map well onto known psychological and genetic properties of intelligence or its relationship to health and fitness. While Geary’s theory serves as an elegant model of “what could be”, it is less successful as a description of “what is”.
Collapse
Affiliation(s)
- Louis D. Matzel
- Department of Psychology, Rutgers University, Piscataway, NJ 08854, USA;
- Correspondence:
| | - Dylan W. Crawford
- Department of Psychology, Rutgers University, Piscataway, NJ 08854, USA;
| | - Bruno Sauce
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| |
Collapse
|
11
|
Burgoyne AP, Engle RW. Mitochondrial Functioning and Its Relation to Higher-Order Cognitive Processes. J Intell 2020; 8:E14. [PMID: 32244594 PMCID: PMC7713014 DOI: 10.3390/jintelligence8020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
One of the most replicated findings in psychology is the positive manifold between cognitive ability measures (Jensen 1998; Spearman 1904) [...].
Collapse
Affiliation(s)
| | - Randall W. Engle
- School of Psychology, Georgia Institute of Technology, 654 Cherry St., Atlanta, GA 30332, USA;
| |
Collapse
|