1
|
Sevgili C. Evaluation of pollution prevention related deficiencies of ships using association rule mining. MARINE POLLUTION BULLETIN 2024; 208:116938. [PMID: 39306965 DOI: 10.1016/j.marpolbul.2024.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
Since marine and environmental pollution is a major problem for the maritime industry, preventive implementations are constantly being developed. In this context, this research aimed to determine the dominant factors in ships detected to have pollution prevention deficiencies in port state control (PSC). A total of 12,530 PSC reports carried out by Paris Memorandum of Understanding (MoU) region between 2017 and 2023 were analyzed with the association rule mining. The Apriori algorithm was performed to reveal hidden and meaningful relationships in the inspections. The dominant variables for inspections that detected pollution prevention deficiencies were ship flag, classification society, number of deficiencies, and inspection type. Association rules revealed that pollution prevention deficiency areas differed interestingly according to geographical region, classification society, and ship age. The findings may be a guide for stakeholders for pollution prevention during ship inspections, and contribute to the achievement of maritime-related Sustainable Development Goals (SDGs).
Collapse
Affiliation(s)
- Coskan Sevgili
- Zonguldak Bülent Ecevit University, Maritime Faculty, Kepez Campus, Karadeniz Ereğli, Zonguldak 67300, Turkiye.
| |
Collapse
|
2
|
Dong K, Xu Y, Wang Q, Liu X, Xue J, Wu H. Study on the effectiveness of membrane separation + N 2 deoxidation process for the treatment of bacteria in ballast water. MARINE POLLUTION BULLETIN 2023; 188:114652. [PMID: 36736257 DOI: 10.1016/j.marpolbul.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Effects of the membrane separation + N2 deoxidation process on the abundance and activity of bacteria were examined under two salinity conditions at Yangshan Port, Shanghai, China. Sequencing of 16S rRNA gene amplicons demonstrated a decrease in the diversity and activity of bacteria in fresh water and marine water, with a total removal rate of approximately 63 % and 69 %, respectively. Indicator bacteria decreased to 10 CFU·100 mL-1, which met the IMO D-2 standard. A total of 13 potential pathogens were detected after treatment, indicating that there is still a risk of pathogenic bacteria invasion in the discharge water, particularly marine bacteria, and that the D-2 standard may be insufficient as a preventive measure against pathogenic bacteria transfer. The results will provide reference for government supervision, and will also be important for monitoring foreign bacteria and technology development.
Collapse
Affiliation(s)
- Kairui Dong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Yulin Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Qiong Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Xiuyan Liu
- College of Meterial and Environmental engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Kurniawan SB, Pambudi DSA, Ahmad MM, Alfanda BD, Imron MF, Abdullah SRS. Ecological impacts of ballast water loading and discharge: insight into the toxicity and accumulation of disinfection by-products. Heliyon 2022; 8:e09107. [PMID: 35309395 PMCID: PMC8927920 DOI: 10.1016/j.heliyon.2022.e09107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Since the implementation of the International Maritime Organization 2004 regulation, most ships have been equipped with on-dock ballast water treatment. While this method is effective in solving the invasive alien species problem, concerns are raised due to the potential release of disinfection by-products (DBPs) as the result of the chemical treatment. This review paper aims to summarize the history of ballast water management (BWM) and the currently used on-dock technology. Chlorination, oxidation, and ozonation are highlighted as the most currently applied methods to treat ballast water on-dock. This paper then focuses on the potential release of toxic DBPs as the result of the selected corresponding treatment methods. Tri-halo methane, haloacetic acid, and several acetic acid-related compounds are emphasized as toxic DBPs with concentrations reaching more than 10 μg/L. The potential toxicities of DBPs, including acute toxicity, carcinogenicity, genotoxicity, and mutagenicity, to aquatic organisms, are then discussed in detail. Future research directions related to the advanced treatment of DBPs before final discharge and analysis of DBPs in coastal sediments, which are barely studied at present, are suggested to enhance the current knowledge on the fate and the ecological impact of BWM.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Dwi Sasmita Aji Pambudi
- Study Program of Marine Electrical Engineering, Department of Marine Electrical Engineering, Politeknik Perkapalan Negeri Surabaya, Jalan Teknik Kimia, Kampus ITS Keputih, Sukolilo, Surabaya 60111, Indonesia
| | - Mahasin Maulana Ahmad
- Study Program of Piping Engineering, Department of Marine Engineering, Politeknik Perkapalan Negeri Surabaya, Jalan Teknik Kimia, Kampus ITS Keputih, Sukolilo, Surabaya 60111, Indonesia
| | - Benedicta Dian Alfanda
- Study Program of Marine Engineering, Department of Marine Engineering, Politeknik Perkapalan Negeri Surabaya, Jalan Teknik Kimia, Kampus ITS Keputih, Sukolilo, Surabaya 60111, Indonesia
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Sayinli B, Dong Y, Park Y, Bhatnagar A, Sillanpää M. Recent progress and challenges facing ballast water treatment - A review. CHEMOSPHERE 2022; 291:132776. [PMID: 34742764 DOI: 10.1016/j.chemosphere.2021.132776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The transoceanic movement of non-indigenous microorganisms and organic and inorganic contaminants through the transfer of ballast water of ocean-going vessels can be considered highly likely. The introduction of contaminants and non-indigenous microorganisms can cause changes in indigenous microorganisms, marine species, and biota, which can create problems for the ecology, economy, environment, and human health. This paper compiles and presents ballast water treatment system concepts, principles of inactivation mechanisms used, and the advantages and challenges of the treatment technologies. In addition, the paper aims to draw attention to the relationship between various organisms and the individual mechanism to be inactivated, including the effect of external factors (e.g., pH, salinity, turbidity) on inactivation efficiency. This review can assist in the choice of a suitable ballast water treatment system, taking into account the water conditions (e.g., pH, temperature, salinity) and indigenous species of the maritime areas where the ships intend to operate. This review also provides information describing the responses of the various organisms to different treatment techniques.
Collapse
Affiliation(s)
- Burcu Sayinli
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland; Department of Chemistry, University of Jyväskylä, Box 111, FI-40014, Jyväskylä, Finland
| | - Yujiao Dong
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Finland
| | - Yuri Park
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland; Institute of Environmental Technology, Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
| | - Amit Bhatnagar
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|