1
|
Du J, Dong Y, Zhao H, Peng L, Wang Y, Yu Q, Li M. Transcriptional regulation of autophagy, cell wall stress response and pathogenicity by Pho23 in C. albicans. FEBS J 2023; 290:855-871. [PMID: 36152022 DOI: 10.1111/febs.16636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 02/04/2023]
Abstract
The modification of chromatin by histone deacetylases (HDACs) has critical roles in transcriptional regulation. In this study, we identified the Rpd3 HDAC complex component Pho23 in Candida albicans and explored its role in the transcriptional regulation of physiological processes. PHO23 deletion increased autophagic activity and upregulated the transcription of ATG genes. Moreover, the deletion of PHO23 severely impaired cell wall stress resistance and reduced the cell wall integrity (CWI) pathway in response to cell wall stress. Furthermore, the pho23Δ/Δ mutant had partial defects in hyphal development and protease secretion, which were associated with the downregulation of genes involved in hyphal development (e.g. HWP1, ALS3 and ECE1) and genes encoding secreted aspartic proteases (e.g. SAP4, SAP5, SAP6 and SAP9). In addition, the deletion of PHO23 strongly attenuated systemic infection and kidney fungal burden in mice, demonstrating that Pho23 is required for the virulence of C. albicans. Together, our results revealed that Pho23 regulates many key physiological processes in C. albicans at the transcriptional level. These data also shed light on the potential for exploiting Rpd3 HDAC complex-related proteins as antifungal targets.
Collapse
Affiliation(s)
- Jiawen Du
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yixuan Dong
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - He Zhao
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Liping Peng
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Yao Wang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Qilin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| | - Mingchun Li
- Department of Microbiology, College of Life Sciences, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Luo G, Geng Z, Kuerban B, Xu Y, Yang J, Liu J, Li M. Enhancement of HSA-pFSHβ production by disrupting YPS1 and supplementing N-acetyl-L-cysteine in Pichia pastoris. Front Microbiol 2022; 13:998647. [PMID: 36620033 PMCID: PMC9810807 DOI: 10.3389/fmicb.2022.998647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Pichia pastoris is widely used for the production of recombinant proteins, but the low production efficiency hinders its wide application in biopharmaceuticals. Moreover, many biopharmaceutical-like proteins are accompanied by degradation during secretory expression in P. pastoris. Objective In this study, we used human serum albumin and porcine follicle-stimulating hormone β (HSA-pFSHβ) fusion protein as a model protein to investigate whether YPS1 and YPT7 gene disruption and N-acetyl-L-cysteine (NAC) supplementation have synergistic effects to inhibit the degradation of recombinant proteins. Results and discussion Our results showed that YPS1 gene disruption reduced the degradation of intact HSA-pFSHβ and increased the yield of intact protein in the culture medium and cells without affecting the integrity of the cell wall. Moreover, the beneficial effects of YPS1 gene disruption were associated with the upregulation of the MAPK signaling pathway and maintenance of redox homeostasis. YPS1 gene disruption and NAC supplementation had synergistic effects on HSA-pFSHβ production. In addition, disruption of vacuolar morphology by YPT7 gene disruption or NH4Cl treatment affected the production of recombinant HSA-pFSHβ protein. Furthermore, YPT7 gene disruption inhibited the processing of signal peptide in high-level produced HSA-pFSHβ strain. In conclusion, our results demonstrated that YPS1 disruption could reduce the degradation of intact HSA-pFSHβ proteins, and synergistically increase the yield of intact HSA-pFSHβ with NAC supplementation. This study provided a valuable reference for reducing recombinant protein degradation and therefore improving the yield of recombinant proteins in P. pastoris.
Collapse
Affiliation(s)
- Gang Luo
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zijian Geng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Buayisham Kuerban
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Yingqing Xu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Jingjing Yang
- Jiangsu Guiliu Animal Husbandry Group Co., Ltd., Xuzhou, Jiangsu, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China,Jiangsu Guiliu Animal Husbandry Group Co., Ltd., Xuzhou, Jiangsu, China,*Correspondence: Muwang Li,
| |
Collapse
|
3
|
Phosphomannose Isomerase Is Involved in Development, Stress Responses, and Pathogenicity of Aspergillus flavus. Microbiol Spectr 2022; 10:e0202722. [PMID: 35980200 PMCID: PMC9603912 DOI: 10.1128/spectrum.02027-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aspergillus flavus causes invasive aspergillosis in immunocompromised patients and severe contamination of agriculturally important crops by producing aflatoxins. The fungal cell wall is absent in animals and is structurally different from that of plants, which makes it a potential antifungal drug target due to its essentiality for fungal survival. Mannose is one of the important components in the fungal cell wall, which requires GDP-mannose (GDP-Man) as the primary donor. Three consecutive enzymes, namely, phosphomannose isomerase (PMI), phosphomannose mutase (PMM), and GDP-mannose phosphorylase (GMPP), are required for GDP-Man biosynthesis. Thus, PMI is of prime importance in cell wall biosynthesis and also has an active role in sugar metabolism. Here, we investigated the functional role of PMI in A. flavus by generating a pmiA-deficient strain. The mutant required exogenous mannose to survive and exhibited reduced growth rate, impaired conidiation, early germination, disturbance in stress responses, and defects in colonization of crop seeds. Furthermore, attenuated virulence of the mutant was documented in both Caenorhabditis elegans and Galleria mellonella infection models. Our results suggested that PMI plays an important role in the development, stress responses, and pathogenicity of A. flavus and therefore could serve as a potential target for battling against infection and controlling aflatoxin contamination caused by A. flavus. IMPORTANCE Aspergillus flavus is a common fungal pathogen of humans, animals, and agriculturally important crops. It causes invasive aspergillosis in humans and also produces highly carcinogenic mycotoxins in postharvest crops that threaten food safety worldwide. To alleviate or eliminate the threats posed by A. flavus, it is necessary to identify genes involved in pathogenicity and mycotoxin contamination. However, little progress has been made in this regard. Here, we focused on PMI, which is the first enzyme involved in the biosynthesis pathway of GDP-Man and thus is important for cell wall synthesis and protein glycosylation. Our study revealed that PMI is important for growth of A. flavus. It is also involved in conidiation, germination, morphogenesis, stress responses, and pathogenicity of A. flavus. Thus, PMI is a potent antifungal target to curb the threats posed by A. flavus.
Collapse
|
4
|
Razzaq I, Berg MD, Jiang Y, Genereaux J, Uthayakumar D, Kim GH, Agyare-Tabbi M, Halder V, Brandl CJ, Lajoie P, Shapiro RS. The SAGA and NuA4 component Tra1 regulates Candida albicans drug resistance and pathogenesis. Genetics 2021; 219:iyab131. [PMID: 34849885 PMCID: PMC8633099 DOI: 10.1093/genetics/iyab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Candida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase domain. In Saccharomyces cerevisiae, the assembly and function of SAGA and NuA4 are compromised by a Tra1 variant (Tra1Q3) with three arginine residues in the putative ATP-binding cleft changed to glutamine. Whole transcriptome analysis of the S. cerevisiae tra1Q3 strain highlights Tra1's role in global transcription, stress response, and cell wall integrity. As a result, tra1Q3 increases susceptibility to multiple stressors, including caspofungin. Moreover, the same tra1Q3 allele in the pathogenic yeast C. albicans causes similar phenotypes, suggesting that Tra1 broadly mediates the antifungal response across yeast species. Transcriptional profiling in C. albicans identified 68 genes that were differentially expressed when the tra1Q3 strain was treated with caspofungin, as compared to gene expression changes induced by either tra1Q3 or caspofungin alone. Included in this set were genes involved in cell wall maintenance, adhesion, and filamentous growth. Indeed, the tra1Q3 allele reduces filamentation and other pathogenesis traits in C. albicans. Thus, Tra1 emerges as a promising therapeutic target for fungal infections.
Collapse
Affiliation(s)
- Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Michelle Agyare-Tabbi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
5
|
Shivarathri R, Jenull S, Stoiber A, Chauhan M, Mazumdar R, Singh A, Nogueira F, Kuchler K, Chowdhary A, Chauhan N. The Two-Component Response Regulator Ssk1 and the Mitogen-Activated Protein Kinase Hog1 Control Antifungal Drug Resistance and Cell Wall Architecture of Candida auris. mSphere 2020; 5:e00973-20. [PMID: 33055262 PMCID: PMC7565899 DOI: 10.1128/msphere.00973-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Candida auris is an emerging multidrug-resistant human fungal pathogen refractory to treatment by several classes of antifungal drugs. Unlike other Candida species, C. auris can adhere to human skin for prolonged periods of time, allowing for efficient skin-to-skin transmission in the hospital environments. However, molecular mechanisms underlying pronounced multidrug resistance and adhesion traits are poorly understood. Two-component signal transduction and mitogen-activated protein (MAP) kinase signaling are important regulators of adherence, antifungal drug resistance, and virulence. Here, we report that genetic removal of SSK1 encoding a response regulator and the mitogen-associated protein kinase HOG1 restores the susceptibility to both amphotericin B (AMB) and caspofungin (CAS) in C. auris clinical strains. The loss of SSK1 and HOG1 alters membrane lipid permeability, cell wall mannan content, and hyperresistance to cell wall-perturbing agents. Interestingly, our data reveal variable functions of SSK1 and HOG1 in different C. auris clinical isolates, suggesting a pronounced genetic plasticity affecting cell wall function, stress adaptation, and multidrug resistance. Taken together, our data suggest that targeting two-component signal transduction systems could be suitable for restoring C. auris susceptibility to antifungal drugs.IMPORTANCECandida auris is an emerging multidrug-resistant (MDR) fungal pathogen that presents a serious global threat to human health. The Centers for Disease Control and Prevention (CDC) have classified C. auris as an urgent threat to public health for the next decade due to its major clinical and economic impact and the lack of effective antifungal drugs and because of future projections concerning new C. auris infections. Importantly, the Global Antimicrobial Resistance Surveillance System (GLASS) has highlighted the need for more robust and efficacious global surveillance schemes enabling the identification and monitoring of antifungal resistance in Candida infections. Despite the clinical relevance of C. auris infections, our overall understanding of its pathophysiology and virulence, its response to human immune surveillance, and the molecular basis of multiple antifungal resistance remains in its infancy. Here, we show a marked phenotypic plasticity of C. auris clinical isolates. Further, we demonstrate critical roles of stress response mechanisms in regulating multidrug resistance and show that cell wall architecture and composition are key elements that determine antifungal drug susceptibilities. Our data promise new therapeutic options to treat drug-refractory C. auris infections.
Collapse
Affiliation(s)
- Raju Shivarathri
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sabrina Jenull
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anton Stoiber
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Rounik Mazumdar
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Ashutosh Singh
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Filomena Nogueira
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
- CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
- Labdia-Labordiagnostik GmbH, Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Department of Medical Biochemistry, Max Perutz Labs Vienna, Vienna, Austria
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
6
|
Saccharomyces cerevisiae and Candida albicans Yeast Cells Labeled with Fe(III) Complexes as MRI Probes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of MRI probes is of interest for labeling antibiotic-resistant fungal infections based on yeast. Our work showed that yeast cells can be labeled with high-spin Fe(III) complexes to produce enhanced T2 water proton relaxation. These Fe(III)-based macrocyclic complexes contained a 1,4,7-triazacyclononane framework, two pendant alcohol groups, and either a non-coordinating ancillary group and a bound water molecule or a third coordinating pendant. The Fe(III) complexes that had an open coordination site associated strongly with Saccharomyces cerevisiae upon incubation, as shown by screening using Z-spectra analysis. The incubation of one Fe(III) complex with either Saccharomyces cerevisiae or Candida albicans yeast led to an interaction with the β-glucan-based cell wall, as shown by the ready retrieval of the complex by the bidentate chelator called maltol. Other conditions, such as a heat shock treatment of the complexes, produced Fe(III) complex uptake that could not be reversed by the addition of maltol. Appending a fluorescence dye to Fe(TOB) led to uptake through secretory pathways, as shown by confocal fluorescence microscopy and by the incomplete retrieval of the Fe(III) complex by the maltol treatment. Yeast cells that were labeled with these Fe(III) complexes displayed enhanced water proton T2 relaxation, both for S. cerevisiae and for yeast and hyphal forms of C. albicans.
Collapse
|
7
|
Vandermeulen MD, Cullen PJ. New Aspects of Invasive Growth Regulation Identified by Functional Profiling of MAPK Pathway Targets in Saccharomyces cerevisiae. Genetics 2020; 216:95-116. [PMID: 32665277 PMCID: PMC7463291 DOI: 10.1534/genetics.120.303369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
MAPK pathways are drivers of morphogenesis and stress responses in eukaryotes. A major function of MAPK pathways is the transcriptional induction of target genes, which produce proteins that collectively generate a cellular response. One approach to comprehensively understand how MAPK pathways regulate cellular responses is to characterize the individual functions of their transcriptional targets. Here, by examining uncharacterized targets of the MAPK pathway that positively regulates filamentous growth in Saccharomyces cerevisiae (fMAPK pathway), we identified a new role for the pathway in negatively regulating invasive growth. Specifically, four targets were identified that had an inhibitory role in invasive growth: RPI1, RGD2, TIP1, and NFG1/YLR042cNFG1 was a highly induced unknown open reading frame that negatively regulated the filamentous growth MAPK pathway. We also identified SFG1, which encodes a transcription factor, as a target of the fMAPK pathway. Sfg1p promoted cell adhesion independently from the fMAPK pathway target and major cell adhesion flocculin Flo11p, by repressing genes encoding presumptive cell-wall-degrading enzymes. Sfg1p also contributed to FLO11 expression. Sfg1p and Flo11p regulated different aspects of cell adhesion, and their roles varied based on the environment. Sfg1p also induced an elongated cell morphology, presumably through a cell-cycle delay. Thus, the fMAPK pathway coordinates positive and negative regulatory proteins to fine-tune filamentous growth resulting in a nuanced response. Functional analysis of other pathways' targets may lead to a more comprehensive understanding of how signaling cascades generate biological responses.
Collapse
Affiliation(s)
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, New York 14260-1300
| |
Collapse
|
8
|
Patel A, Asik D, Snyder EM, Dilillo AE, Cullen PJ, Morrow JR. Binding and Release of FeIII Complexes from Glucan Particles for the Delivery of T 1 MRI Contrast Agents. ChemMedChem 2020; 15:1050-1057. [PMID: 32168421 DOI: 10.1002/cmdc.202000003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Yeast-derived β-glucan particles (GPs) are a class of microcarriers under development for the delivery of drugs and imaging agents to immune-system cells for theranostic approaches. However, the encapsulation of hydrophilic imaging agents in the porous GPs is challenging. Here, we show that the unique coordination chemistry of FeIII -based macrocyclic T1 MRI contrast agents permits facile encapsulation in GPs. Remarkably, GPs labeled with the simple FeIII complexes are stable under physiologically relevant conditions, despite the absence of amphiphilic groups. In contrast to the free FeIII coordination complex, the labeled FeIII -GPs have lowered T1 relaxivity and act as a silenced form of the contrast agent. Addition of a fluorescent tag to the FeIII complex produces a bimodal agent to further enable tracking of the nanoparticles and to monitor release. Treatment of the iron-labeled GPs with a maltol chelator or with mildly acidic conditions releases the intact iron complex and restores enhanced T1 relaxation of the water protons.
Collapse
Affiliation(s)
- Akanksha Patel
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Eric M Snyder
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Alexandra E Dilillo
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Paul J Cullen
- Department of Biology, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| |
Collapse
|
9
|
Zhang YZ, Chen Q, Liu CH, Lei L, Li Y, Zhao K, Wei MQ, Guo ZR, Wang Y, Xu BJ, Jiang YF, Kong L, Liu YL, Lan XJ, Jiang QT, Ma J, Wang JR, Chen GY, Wei YM, Zheng YL, Qi PF. Fusarium graminearum FgCWM1 Encodes a Cell Wall Mannoprotein Conferring Sensitivity to Salicylic Acid and Virulence to Wheat. Toxins (Basel) 2019; 11:toxins11110628. [PMID: 31671876 PMCID: PMC6891299 DOI: 10.3390/toxins11110628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/30/2022] Open
Abstract
Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease of wheat. Salicylic acid (SA) is involved in the resistance of wheat to F. graminearum. Cell wall mannoprotein (CWM) is known to trigger defense responses in plants, but its role in the pathogenicity of F. graminearum remains unclear. Here, we characterized FgCWM1 (FG05_11315), encoding a CWM in F. graminearum. FgCWM1 was highly expressed in wheat spikes by 24 h after initial inoculation and was upregulated by SA. Disruption of FgCWM1 (ΔFgCWM1) reduced mannose and protein accumulation in the fungal cell wall, especially under SA treatment, and resulted in defective fungal cell walls, leading to increased fungal sensitivity to SA. The positive role of FgCWM1 in mannose and protein accumulation was confirmed by its expression in Saccharomyces cerevisiae. Compared with wild type (WT), ΔFgCWM1 exhibited reduced pathogenicity toward wheat, but it produced the same amount of deoxynivalenol both in culture and in spikes. Complementation of ΔFgCWM1 with FgCWM1 restored the WT phenotype. Localization analyses revealed that FgCWM1 was distributed on the cell wall, consistent with its structural role. Thus, FgCWM1 encodes a CWM protein that plays an important role in the cell wall integrity and pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Ya-Zhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Cai-Hong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Lu Lei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yang Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Kan Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mei-Qiao Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Zhen-Ru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Bin-Jie Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yun-Feng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan-Lin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiu-Jin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qian-Tao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ji-Rui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guo-Yue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yu-Ming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - You-Liang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Peng-Fei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
10
|
Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast. Genetics 2019; 212:667-690. [PMID: 31053593 DOI: 10.1534/genetics.119.302004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
Signaling pathways can regulate biological responses by the transcriptional regulation of target genes. In yeast, multiple signaling pathways control filamentous growth, a morphogenetic response that occurs in many species including fungal pathogens. Here, we examine the role of signaling pathways that control filamentous growth in regulating adhesion-dependent surface responses, including mat formation and colony patterning. Expression profiling and mutant phenotype analysis showed that the major pathways that regulate filamentous growth [filamentous growth MAPK (fMAPK), RAS, retrograde (RTG), RIM101, RPD3, ELP, SNF1, and PHO85] also regulated mat formation and colony patterning. The chromatin remodeling complex, SAGA, also regulated these responses. We also show that the RAS and RTG pathways coregulated a common set of target genes, and that SAGA regulated target genes known to be controlled by the fMAPK, RAS, and RTG pathways. Analysis of surface growth-specific targets identified genes that respond to low oxygen, high temperature, and desiccation stresses. We also explore the question of why cells make adhesive contacts in colonies. Cell adhesion contacts mediated by the coregulated target and adhesion molecule, Flo11p, deterred entry into colonies by macroscopic predators and impacted colony temperature regulation. The identification of new regulators (e.g., SAGA), and targets of surface growth in yeast may provide insights into fungal pathogenesis in settings where surface growth and adhesion contributes to virulence.
Collapse
|
11
|
Conceição PM, Chaves AFA, Navarro MV, Castilho DG, Calado JCP, Haniu AECJ, Xander P, Batista WL. Cross-talk between the Ras GTPase and the Hog1 survival pathways in response to nitrosative stress in Paracoccidioides brasiliensis. Nitric Oxide 2019; 86:1-11. [PMID: 30772503 DOI: 10.1016/j.niox.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus that cause paracoccidioidomycosis (PCM), the major systemic mycosis in Latin America. The capacity to evade the innate immune response of the host is due to P. brasiliensis ability to respond and to survive the nitrosative stress caused by phagocytic cells. However, the regulation of signal transduction pathways associated to nitrosative stress response are poorly understood. Ras GTPase play an important role in the various cellular events in many fungi. Ras, in its activated form (Ras-GTP), interacts with effector proteins and can initiate a kinase cascade. In this report, we investigated the role of Ras GTPase in P. brasiliensis after in vitro stimulus with nitric oxide (NO). We observed that low concentrations of NO induced cell proliferation in P. brasiliensis, while high concentrations promoted decrease in fungal viability, and both events were reversed in the presence of a NO scavenger. We observed that high levels of NO induced Ras activation and its S-nitrosylation. Additionally, we showed that Ras modulated the expression of antioxidant genes in response to nitrosative stress. We find that the Hog1 MAP kinase contributed to nitrosative stress response in P. brasiliensis in a Ras-dependent manner. Taken together, our data demonstrate the relationship between Ras-GTPase and Hog1 MAPK pathway allowing for the P. brasiliensis adaptation to nitrosative stress.
Collapse
Affiliation(s)
- Palloma Mendes Conceição
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema, SP, Brazil
| | - Alison Felipe Alencar Chaves
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Daniele Gonçalves Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Juliana Cristina P Calado
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Ana Eliza Coronel Janu Haniu
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema, SP, Brazil
| | - Wagner L Batista
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Campus Diadema, SP, Brazil; Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|