1
|
The Candida glabrata Parent Strain Trap: How Phenotypic Diversity Affects Metabolic Fitness and Host Interactions. Microbiol Spectr 2023; 11:e0372422. [PMID: 36633405 PMCID: PMC9927409 DOI: 10.1128/spectrum.03724-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Reference strains improve reproducibility by standardizing observations and methodology, which has ultimately led to important insights into fungal pathogenesis. However, recent investigations have highlighted significant genotypic and phenotypic heterogeneity across isolates that influence genetic circuitry and virulence within a species. Candida glabrata is the second leading cause of candidiasis, a life-threatening infection, and undergoes extensive karyotype and phenotypic changes in response to stress. Much of the work conducted on this pathogen has focused on two sequenced strains, CBS138 (ATCC 2001) and BG2. Few studies have compared these strains in detail, but key differences include mating type and altered patterns of expression of EPA adhesins. In fact, most C. glabrata isolates and BG2 are MATa, while CBS138 is MATα. However, it is not known if other phenotypic differences between these strains play a role in our understanding of C. glabrata pathogenesis. Thus, we set out to characterize metabolic, cell wall, and host-interaction attributes for CBS138 and BG2. We found that BG2 utilized a broader range of nitrogen sources and had reduced cell wall size and carbohydrate exposure than CBS138, which we hypothesized results in differences in innate immune interactions and virulence. We observed that, although both strains were phagocytosed to a similar extent, BG2 replicated to higher numbers in macrophages and was more virulent during Galleria mellonella infection than CBS138 in a dose-dependent manner. Interestingly, deletion of SNF3, a major nutrient sensor, did not affect virulence in G. mellonella for BG2, but significantly enhanced larval killing in the CBS138 background compared to the parent strain. Understanding these fundamental differences in metabolism and host interactions will allow more robust conclusions to be drawn in future studies of C. glabrata pathogenesis. IMPORTANCE Reference strains provide essential insights into the mechanisms underlying virulence in fungal pathogens. However, recent studies in Candida albicans and other species have revealed significant genotypic and phenotypic diversity within clinical isolates that are challenging paradigms regarding key virulence factors and their regulation. Candida glabrata is the second leading cause of candidiasis, and many studies use BG2 or CBS138 for their investigations. Therefore, we aimed to characterize important virulence-related phenotypes for both strains that might alter conclusions about C. glabrata pathogenesis. Our study provides context for metabolic and cell wall changes and how these may influence host interaction phenotypes. Understanding these differences is necessary to support robust conclusions about how virulence factors may function in these and other very different strain backgrounds.
Collapse
|
2
|
Epigenetic Regulation of Antifungal Drug Resistance. J Fungi (Basel) 2022; 8:jof8080875. [PMID: 36012862 PMCID: PMC9409733 DOI: 10.3390/jof8080875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
In medical mycology, epigenetic mechanisms are emerging as key regulators of multiple aspects of fungal biology ranging from development, phenotypic and morphological plasticity to antifungal drug resistance. Emerging resistance to the limited therapeutic options for the treatment of invasive fungal infections is a growing concern. Human fungal pathogens develop drug resistance via multiple mechanisms, with recent studies highlighting the role of epigenetic changes involving the acetylation and methylation of histones, remodeling of chromatin and heterochromatin-based gene silencing, in the acquisition of antifungal resistance. A comprehensive understanding of how pathogens acquire drug resistance will aid the development of new antifungal therapies as well as increase the efficacy of current antifungals by blocking common drug-resistance mechanisms. In this article, we describe the epigenetic mechanisms that affect resistance towards widely used systemic antifungal drugs: azoles, echinocandins and polyenes. Additionally, we review the literature on the possible links between DNA mismatch repair, gene silencing and drug-resistance mechanisms.
Collapse
|
3
|
Yu S, Paderu P, Lee A, Eirekat S, Healey K, Chen L, Perlin DS, Zhao Y. Histone Acetylation Regulator Gcn5 Mediates Drug Resistance and Virulence of Candida glabrata. Microbiol Spectr 2022; 10:e0096322. [PMID: 35658596 PMCID: PMC9241792 DOI: 10.1128/spectrum.00963-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/17/2022] [Indexed: 01/08/2023] Open
Abstract
Candida glabrata is poised to adapt to drug pressure rapidly and acquire antifungal resistance leading to therapeutic failure. Given the limited antifungal armamentarium, there is an unmet need to explore new targets or therapeutic strategies for antifungal treatment. The lysine acetyltransferase Gcn5 has been implicated in the pathogenesis of C. albicans. Yet how Gcn5 functions and impacts antifungal resistance in C. glabrata is unknown. Disrupting GCN5 rendered C. glabrata cells more sensitive to various stressors, partially reverted resistance in drug-resistant mutants, and attenuated the emergence of resistance compared to wild-type cells. RNA sequencing (RNA-seq) analysis revealed transcriptomic changes involving multiple biological processes and different transcriptional responses to antifungal drugs in gcn5Δ cells compared to wild-type cells. GCN5 deletion also resulted in reduced intracellular survival within THP-1 macrophages. In summary, Gcn5 plays a critical role in modulating the virulence of C. glabrata and regulating its response to antifungal pressure and host defense. IMPORTANCE As an important and successful human pathogen, Candida glabrata is known for its swift adaptation and rapid acquisition of resistance to the most commonly used antifungal agents, resulting in therapeutic failure in clinical settings. Here, we describe that the histone acetyltransferase Gcn5 is a key factor in adapting to antifungal pressure and developing resistance in C. glabrata. The results provide new insights into epigenetic control over the drug response in C. glabrata and may be useful for drug target discovery and the development of new therapeutic strategies to combat fungal infections.
Collapse
Affiliation(s)
- Shuying Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, People’s Republic of China
| | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Annie Lee
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sami Eirekat
- Department of Biology, William Paterson University, Wayne, New Jersey, USA
| | - Kelley Healey
- Department of Biology, William Paterson University, Wayne, New Jersey, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| |
Collapse
|
4
|
Razzaq I, Berg MD, Jiang Y, Genereaux J, Uthayakumar D, Kim GH, Agyare-Tabbi M, Halder V, Brandl CJ, Lajoie P, Shapiro RS. The SAGA and NuA4 component Tra1 regulates Candida albicans drug resistance and pathogenesis. Genetics 2021; 219:iyab131. [PMID: 34849885 PMCID: PMC8633099 DOI: 10.1093/genetics/iyab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 11/14/2022] Open
Abstract
Candida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase domain. In Saccharomyces cerevisiae, the assembly and function of SAGA and NuA4 are compromised by a Tra1 variant (Tra1Q3) with three arginine residues in the putative ATP-binding cleft changed to glutamine. Whole transcriptome analysis of the S. cerevisiae tra1Q3 strain highlights Tra1's role in global transcription, stress response, and cell wall integrity. As a result, tra1Q3 increases susceptibility to multiple stressors, including caspofungin. Moreover, the same tra1Q3 allele in the pathogenic yeast C. albicans causes similar phenotypes, suggesting that Tra1 broadly mediates the antifungal response across yeast species. Transcriptional profiling in C. albicans identified 68 genes that were differentially expressed when the tra1Q3 strain was treated with caspofungin, as compared to gene expression changes induced by either tra1Q3 or caspofungin alone. Included in this set were genes involved in cell wall maintenance, adhesion, and filamentous growth. Indeed, the tra1Q3 allele reduces filamentation and other pathogenesis traits in C. albicans. Thus, Tra1 emerges as a promising therapeutic target for fungal infections.
Collapse
Affiliation(s)
- Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Grace H Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Michelle Agyare-Tabbi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
5
|
Zamith-Miranda D, Amatuzzi RF, Munhoz da Rocha IF, Martins ST, Lucena AC, Vieira AZ, Trentin G, Almeida F, Rodrigues ML, Nakayasu ES, Nosanchuk JD, Alves LR. Transcriptional and translational landscape of Candida auris in response to caspofungin. Comput Struct Biotechnol J 2021; 19:5264-5277. [PMID: 34630944 PMCID: PMC8481930 DOI: 10.1016/j.csbj.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 01/25/2023] Open
Abstract
Candida auris has emerged as a serious worldwide threat by causing opportunistic infections that are frequently resistant to one or more conventional antifungal medications resulting in high mortality rates. Against this backdrop, health warnings around the world have focused efforts on understanding C. auris fungal biology and effective prevention and treatment approaches to combat this fungus. To date, there is little information about the differentially expressed genes when this fungus is treated with conventional antifungals, and caspofungin is a standard echinocandin deployed in the therapy against C. auris. In this work, we treated two distinct strains of C. auris for 24 h with caspofungin, and the cellular responses were evaluated at the morphological, translational and transcriptional levels. We first observed that the echinocandin caused morphological alterations, aggregation of yeast cells, and modifications in the cell wall composition of C. auris. Transcriptomic analysis revealed an upregulation of genes related to the synthesis of the cell wall, ribosome, and cell cycle after exposure to caspofungin. Supporting these findings, the integrated proteomic analysis showed that caspofungin-treated cells were enriched in ribosome-related proteins and cell wall, especially mannoproteins. Altogether, these results provide further insights into the biology of C. auris and expands our understanding regarding the antifungal activity of caspofungin and reveal cellular targets, as the mannose metabolism, that can be further explored for the development of novel antifungals.
Collapse
Affiliation(s)
- Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rafaela F. Amatuzzi
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba, Brazil
| | | | - Sharon T. Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba, Brazil
| | - Aline C.R. Lucena
- Laboratory for Applied Sciences and Technology in Health, Carlos Chagas Institute, FIOCRUZ PR, Curitiba, Brazil
| | - Alexandre Z. Vieira
- Laboratory for Applied Sciences and Technology in Health, Carlos Chagas Institute, FIOCRUZ PR, Curitiba, Brazil
| | - Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marcio L. Rodrigues
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba, Brazil
- Microbiology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lysangela R. Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ PR, Curitiba, Brazil
| |
Collapse
|
6
|
Diotti R, Esposito M, Shen CH. Telomeric and Sub-Telomeric Structure and Implications in Fungal Opportunistic Pathogens. Microorganisms 2021; 9:microorganisms9071405. [PMID: 34209786 PMCID: PMC8305976 DOI: 10.3390/microorganisms9071405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Telomeres are long non-coding regions found at the ends of eukaryotic linear chromosomes. Although they have traditionally been associated with the protection of linear DNA ends to avoid gene losses during each round of DNA replication, recent studies have demonstrated that the role of these sequences and their adjacent regions go beyond just protecting chromosomal ends. Regions nearby to telomeric sequences have now been identified as having increased variability in the form of duplications and rearrangements that result in new functional abilities and biodiversity. Furthermore, unique fungal telomeric and chromatin structures have now extended clinical capabilities and understanding of pathogenicity levels. In this review, telomere structure, as well as functional implications, will be examined in opportunistic fungal pathogens, including Aspergillus fumigatus, Candida albicans, Candida glabrata, and Pneumocystis jirovecii.
Collapse
Affiliation(s)
- Raffaella Diotti
- Department of Biological Sciences, Bronx Community College, City University of New York, New York, NY 10453, USA;
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
| | - Michelle Esposito
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
- Department of Biology, College of Staten Island, City University of New York, New York, NY 10314, USA
| | - Chang Hui Shen
- The Graduate Center, PhD Program in Biology, City University of New York, New York, NY 10016, USA;
- Department of Biology, College of Staten Island, City University of New York, New York, NY 10314, USA
- The Graduate Center, PhD Program in Biochemistry, City University of New York, New York, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, New York, NY 10031, USA
- Correspondence: ; Tel.: +1-(718)-982-3998; Fax: +1-(718)-982-3852
| |
Collapse
|
7
|
Two Functionally Redundant FK506-Binding Proteins Regulate Multidrug Resistance Gene Expression and Govern Azole Antifungal Resistance. Antimicrob Agents Chemother 2021; 65:AAC.02415-20. [PMID: 33722894 DOI: 10.1128/aac.02415-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. Candida glabrata is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene CgPDR1 are the most prevalent causes of azole resistance in clinical settings. CgPDR1 is also transcriptionally activated upon azole exposure; however, factors governing CgPDR1 gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the CgPDR1 regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control CgPDR1 expression, as a Cgfpr3Δ4Δ mutant displayed elevated expression of the CgPDR1 gene along with overexpression of its target genes, CgCDR1, CgCDR2, and CgSNQ2, which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Cgrph1Δ mutant displaying significantly lower basal expression levels of the CgPDR1 and CgCDR1 genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and CgPDR1 gene expression and implicate CgFpr in the virulence of C. glabrata.
Collapse
|
8
|
Galdiero E, Salvatore MM, Maione A, Carraturo F, Galdiero S, Falanga A, Andolfi A, Salvatore F, Guida M. Impact of the Peptide WMR-K on Dual-Species Biofilm Candida albicans/Klebsiella pneumoniae and on the Untargeted Metabolomic Profile. Pathogens 2021; 10:214. [PMID: 33669279 PMCID: PMC7920046 DOI: 10.3390/pathogens10020214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, the scientific community has focused on the development of new antibiotics to address the difficulties linked to biofilm-forming microorganisms and drug-resistant infections. In this respect, synthetic antimicrobial peptides (AMPs) are particularly regarded for their therapeutic potential against a broad spectrum of pathogens. In this work, the antimicrobial and antibiofilm activities of the peptide WMR-K towards single and dual species cultures of Candida albicans and Klebsiella pneumoniae were investigated. We found minimum inhibitory concentration (MIC) values for WMR-K of 10 µM for K. pneumoniae and of 200 µM for C. albicans. Furthermore, sub-MIC concentrations of peptide showed an in vitro inhibition of biofilm formation of mono and polymicrobial systems and also a good biofilm eradication even if higher concentrations of it are needed. In order to provide additional evidence for the effect of the examined peptide, a study of changes in extracellular metabolites excreted and/or uptaken from the culture medium (metabolomic footprinting) in the poly-microbial association of C. albicans and K. pneumoniae in presence and absence of WMR-K was performed. Comparing to the untreated dual species biofilm culture, the metabolomic profile of the WMR-K treated culture appears significantly altered. The differentially expressed compounds are mainly related to the primary metabolic pathways, including amino acids, trehalose, pyruvic acid, glycerol and vitamin B6.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Federica Carraturo
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples ‘Federico II’, Via dell’ Università 100, 80055 Naples, Italy;
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples ‘Federico II’, 80055 Naples, Italy
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (A.A.); (F.S.)
| | - Marco Guida
- Department of Biology, University of Naples ‘Federico II’, via Cinthia, 80126 Naples, Italy; (E.G.); (A.M.); (F.C.); (M.G.)
| |
Collapse
|