1
|
Rodrigues MIDS, Cruz GHRD, Lucini F, Almeida AMD, Pereira FF, Ramalho RT, Simionatto S, Rossato L. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host for the study of pathogenicity in Candida auris. Microb Pathog 2025; 198:107115. [PMID: 39536838 DOI: 10.1016/j.micpath.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Candida auris, a multidrug-resistant fungal pathogen, has emerged as a significant global health threat due to its high transmission and mortality rates, especially in healthcare settings. OBJECTIVE This study aimed to establish the larvae of the coleopteran Tenebrio molitor (mealworm) as an in vivo model to evaluate the virulence of different C. auris strains. METHODS T. molitor larvae were inoculated with varying doses and strains of C. auris. Mortality rates were monitored, melanization responses, and phenoloxidase activity were assessed. Histopathological analyses were conducted to observe tissue invasion by the yeast cells. Additionally, a biofilm formation test was included as a complementary analysis to determine if biofilm production would influence the virulence of the C. auris strains. RESULTS A dose-dependent increase in mortality was observed, with the highest fungal load leading to the highest mortality rates. The study also revealed significant differences in virulence among the strains, with those from Kuwait and the reference strain CBS 10913 showing the highest pathogenicity. Melanization rates were significantly higher in infected larvae, indicating an active immune response. The histopathological analysis revealed the presence of C. auris cells within the tissue of T. molitor larvae. However, the biofilm formation complementary test did not show a significant difference in virulence among the different clades of C. auris. CONCLUSION The T. molitor model effectively demonstrated the pathogenic potential and virulence differences of C. auris strains. Strains from Kuwait and the reference strain CBS 10913 exhibited the highest virulence, causing 100 % mortality within 24 h. The model also highlighted significant biofilm formation and melanization responses, correlating with fungal burden. This insect model provides a valuable and cost-effective tool for preliminary virulence screening of clinical yeast strains, offering insights into host-pathogen interactions and the potential for evaluating antifungal treatments in vivo.
Collapse
Affiliation(s)
| | | | - Fabíola Lucini
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Alexandre Moreira de Almeida
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Fabricio Fagundes Pereira
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Rondon Tosta Ramalho
- Health and Development in the Midwest Region, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
2
|
Parrott DL, Baxter BK. Fungi of Great Salt Lake, Utah, USA: a spatial survey. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1438347. [PMID: 39347460 PMCID: PMC11427377 DOI: 10.3389/ffunb.2024.1438347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
The natural system at Great Salt Lake, Utah, USA was augmented by the construction of a rock-filled railroad causeway in 1960, creating two lakes at one site. The north arm is sequestered from the mountain snowmelt inputs and thus became saturated with salts (250-340 g/L). The south arm is a flourishing ecosystem with moderate salinity (90-190 g/L) and a significant body of water for ten million birds on the avian flyways of the western US who engorge themselves on the large biomass of brine flies and shrimp. The sediments around the lake shores include calcium carbonate oolitic sand and clay, and further away from the saltwater margins, a zone with less saline soil. Here a small number of plants can thrive, including Salicornia and Sueda species. At the north arm at Rozel Point, halite crystals precipitate in the salt-saturated lake water, calcium sulfate precipitates to form gypsum crystals embedded in the clay, and high molecular weight asphalt seeps from the ground. It is an ecosystem with gradients and extremes, and fungi are up to the challenge. We have collected data on Great Salt Lake fungi from a variety of studies and present them here in a spatial survey. Combining knowledge of cultivation studies as well as environmental DNA work, we discuss the genera prevalent in and around this unique ecosystem. A wide diversity of taxa were found in multiple microniches of the lake, suggesting significant roles for these genera: Acremonium, Alternaria, Aspergillus, Cladosporium, Clydae, Coniochaeta, Cryptococcus, Malassezia, Nectria, Penicillium, Powellomyces, Rhizophlyctis, and Wallemia. Considering the species present and the features of Great Salt Lake as a terminal basin, we discuss of the possible roles of the fungi. These include not only nutrient cycling, toxin mediation, and predation for the ecosystem, but also roles that would enable other life to thrive in the water and on the shore. Many genera that we discovered may help other organisms in alleviating salinity stress, promoting growth, or affording protection from dehydration. The diverse taxa of Great Salt Lake fungi provide important benefits for the ecosystem.
Collapse
Affiliation(s)
| | - Bonnie K. Baxter
- Great Salt Lake Institute, Westminster University, Salt Lake
City, UT, United States
| |
Collapse
|
3
|
Torres M, Diaz-Ortiz J, Davis MG, Schwartz JR, Celis Ramírez AM. Galleria mellonella as a superficial model for Malassezia globosa and its treatment. Access Microbiol 2024; 6:000745.v3. [PMID: 39045242 PMCID: PMC11261708 DOI: 10.1099/acmi.0.000745.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/17/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction. Malassezia globosa is a yeast species that belongs to the mycobiota of humans and animals, associated with dermatological disorders, such as dandruff. This is a chronic scalp skin disorder characterized by flaking and itching. Treatments include commercial shampoo with different formulations that contain antifungal activities like zinc pyrithione (ZPT) or piroctone olamine (PO). The effectiveness of these formulations has been evaluated for decades for dandruff symptom relief of volunteers. To date, non-mammalian, in vivo methods exist to test formulations of these actives. Aim. To evaluate in vivo in Galleria mellonella larva, two commercial antifungal shampoos (shampoo with 1 % ZPT and 1.6 % zinc Carbonate and shampoo with 0.5 % PO) against this species. Methodology. G. mellonella larvae were inoculated with M. globosa on abraded cuticular surface. Then, integument cell viability, histological changes, and fungal burden were evaluated. Results. Larvae inoculated with M. globosa showed higher lesion melanization and tissue damage. In addition, M. globosa population showed to increase over time. Concerning the shampoo's effectiveness, both formulations significantly reduced M. globosa burden and tissue damage. Conclusion. G. mellonella larvae were allowed to evaluate M. globosa superficial infection and antifungal effectiveness. Shampoos with ZPT and PO showed a positive effect on inoculated larvae.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| | - Juliana Diaz-Ortiz
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Biological Science Deparment, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
4
|
Hensel ME, Rodrigues-Hoffmann A, Dray BK, Wilkerson GK, Baze WB, Sulkosky S, Hodo CL. Gastrointestinal tract pathology of the owl monkey ( Aotus spp.). Vet Pathol 2024; 61:316-323. [PMID: 37830482 PMCID: PMC10804813 DOI: 10.1177/03009858231204260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Owl monkeys are small nocturnal new world primates in the genus Aotus that are most used in biomedical research for malaria. Cardiomyopathy and nephropathy are well-described common diseases contributing to their morbidity and mortality; less is known about lesions affecting the gastrointestinal tract. Records from a 14-year period (2008-2022) at the Keeling Center for Comparative Medicine and Research were queried to identify instances of spontaneous gastrointestinal disease that directly contributed to the cause of death from the 235 adult owl monkeys submitted for necropsy. Of the 235, 10.6% (25/235) had gastrointestinal disease listed as a significant factor that contributed to morbidity and mortality. Diagnoses included candidiasis (3/25), gastric bloat (4/25), and intestinal incarceration and ischemia secondary (11/25), which included intussusception (4/25), mesenteric rent (3/25), strangulating lipoma (2/25), intestinal torsion (1/25), and an inguinal hernia (1/25). Intestinal adenocarcinomas affecting the jejunum (4/25) were the most common neoplasia diagnosis. Oral squamous cell carcinoma (1/25) and intestinal lymphoma (2/25) were also diagnosed. This report provides evidence of spontaneous lesions in the species that contribute to morbidity and mortality.
Collapse
Affiliation(s)
| | | | | | | | - Wally B. Baze
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| | | | - Carolyn L. Hodo
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| |
Collapse
|
5
|
Sachivkina N, Karamyan A, Petrukhina O, Kuznetsova O, Neborak E, Ibragimova A. A rabbit model of ear otitis established using the Malassezia pachydermatis strain C23 from dogs. Vet World 2023; 16:2192-2199. [PMID: 38152255 PMCID: PMC10750737 DOI: 10.14202/vetworld.2023.2192-2199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/04/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim Fungal infections are a growing problem for both humans and animals due to the emergence of pathogenic strains resistant to modern antifungal treatments. To evaluate the efficacy of new antifungal drugs, it is essential to develop animal models that demonstrate typical responses to both the infection (pathogenesis and clinical course) and to the treatment, including adverse effects. In this study, we established a rabbit otitis model by infection of an aggressive multidrug-resistant strain from dogs, Malassezia pachydermatis C23, with no need for concomitant immunosuppression. Materials and Methods Twenty healthy adult male gray giant rabbits (1 year old, 5.5 kg) were inoculated once with M. pachydermatis C23 at 108 colony-forming units/mL. We observed the clinical signs of the disease and collected ear smears and blood samples every 5 days. Results The infection progressed rapidly and exhibited characteristic clinical signs without spontaneous recovery for at least 1 month. In fact, substantial deterioration was observed as evidenced by blood parameters. Conclusion This rabbit otitis model established using an aggressive drug-resistant fungus strain without immunosuppression could prove valuable for testing novel antifungal agents.
Collapse
Affiliation(s)
- Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Arfenya Karamyan
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Olesya Petrukhina
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Olga Kuznetsova
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ekaterina Neborak
- Department of Biochemistry T.T. Berezov, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Alfia Ibragimova
- Department of Foreign Languages, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of General Pharmaceutical and Biomedical Technologies, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
6
|
Torres M, Ramírez AMC. Standardization of Galleria mellonella as an Infection Model for Malassezia furfur and Malassezia pachydermatis. Methods Mol Biol 2023; 2667:15-29. [PMID: 37145273 DOI: 10.1007/978-1-0716-3199-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Galleria mellonella larva has been widely exploited as an infection model for bacteria and fungi. Our laboratory uses this insect as a model for fungal infection caused by the genus Malassezia, in particular, systemic infections caused by Malassezia furfur and Malassezia pachydermatis, which are poorly understood. Here, we describe the G. mellonella larva inoculation process with M. furfur and M. pachydermatis and the posterior assessment of the establishment and dissemination of the infection in the larvae. This assessment was done through the evaluation of larval survival, melanization, fungal burden, hemocytes populations, and histological changes. This methodology allows for the identification of virulence patterns between Malassezia species and the impact of inoculum concentration and temperature.
Collapse
Affiliation(s)
- Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
7
|
Ehemann K, Mantilla MJ, Mora-Restrepo F, Rios-Navarro A, Torres M, Celis Ramírez AM. Many ways, one microorganism: Several approaches to study Malassezia in interactions with model hosts. PLoS Pathog 2022; 18:e1010784. [PMID: 36074792 PMCID: PMC9455852 DOI: 10.1371/journal.ppat.1010784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malassezia, a lipophilic and lipid-dependent yeast, is a microorganism of current interest to mycobiologists because of its role as a commensal or pathogen in health conditions such as dermatological diseases, fungemia, and, as discovered recently, cancer and certain neurological disorders. Various novel approaches in the study of Malassezia have led to increased knowledge of the cellular and molecular mechanisms of this yeast. However, additional efforts are needed for more comprehensive understanding of the behavior of Malassezia in interactions with the host. This article reviews advances useful in the experimental field for Malassezia.
Collapse
Affiliation(s)
- Kevin Ehemann
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - María Juliana Mantilla
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Mora-Restrepo
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Andrea Rios-Navarro
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Maritza Torres
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
8
|
Holzknecht J, Dubrac S, Hedtrich S, Galgóczy L, Marx F. Small, Cationic Antifungal Proteins from Filamentous Fungi Inhibit Candida albicans Growth in 3D Skin Infection Models. Microbiol Spectr 2022; 10:e0029922. [PMID: 35499318 PMCID: PMC9241769 DOI: 10.1128/spectrum.00299-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
The emerging resistance of human-pathogenic fungi to antifungal drugs urges the development of alternative therapeutic strategies. The small, cationic antifungal proteins (AFPs) from filamentous ascomycetes represent promising candidates for next-generation antifungals. These bio-molecules need to be tested for tolerance in the host and efficacy against fungal pathogens before they can be safely applied in humans. Testing of the efficacy and possible adverse effects of new drug candidates in three-dimensional (3D) human-cell based models represents an advantageous alternative to animal experiments. In, this study, as a proof-of-principle, we demonstrate the usefulness of 3D skin infection models for screening new antifungal drug candidates for topical application. We established a cutaneous infection with the opportunistic human-pathogenic yeast Candida albicans in a commercially available 3D full-thickness (FT) skin model to test the curative potential of distinct AFPs from Penicillium chrysogenum (PAFopt, PAFB, and PAFC) and Neosartorya (Aspergillus) fischeri (NFAP2) in vitro. All tested AFPs were comparably well tolerated by the skin models. The infected 3D models exhibited reduced epidermal permeability barriers, allowing C. albicans to colonize the epidermal and dermal layers, and showed increased secretion of the pro-inflammatory cytokine IL-6 and the chemokine IL-8. AFP treatment diminished the fungal burden and penetration depth of C. albicans in the infected models. The epidermal permeability barrier was restored and the secretion of IL-8 was decreased following AFP treatment. In summary, our study proves that the tested AFPs exhibit antifungal potential against cutaneous C. albicans infection in a 3D FT skin model. IMPORTANCE Candida albicans represents one of the most prevalent opportunistic fungal pathogens, causing superficial skin and mucosal infections in humans with certain predisposing health conditions and life-threatening systemic infections in immunosuppressed patients. The emerging drug resistance of this human-pathogenic yeast and the limited number of antifungal drugs for prevention and treatment of infections urgently demands the identification of new antifungal compounds with novel mechanisms of action. Small, cationic antifungal proteins (AFPs) from filamentous fungi represent promising candidates for next-generation antifungals for topical application. These bio-molecules need to be tested for tolerance by the host and efficacy in pathogen clearance prior to being involved in clinical trials. In a proof-of-principle study, we provide evidence for the suitability of 3D human-cell based models as advantageous alternatives to animal experiments. We document the tolerance of specific AFPs and their curative efficacy against cutaneous C. albicans infection in a 3D skin model.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Göethel G, Augsten LV, das Neves GM, Gonçalves IL, de Souza JPS, Garcia SC, Eifler-Lima VL. The role of alternative toxicological trials in drug discovery programs: The case of Caenorhabditis elegans and other methods. Curr Med Chem 2022; 29:5270-5288. [PMID: 35352642 DOI: 10.2174/0929867329666220329190825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The discovery of a new drug requires over a billion dollars and around 12 years of research efforts, and toxicity is the leading reason for failure to approve candidate drugs. Many alternative methods have been validated to detect toxicity as early as possible to diminish the waste of resources and efforts in medicinal chemistry research, and in vivo alternative methods are especially valuable for the amount of information they can give at little cost and in a short time. In this work, we present a review of the literature published between the years 2000 and 2021 of in vivo alternative methods of toxicity screening employed in medicinal chemistry, which we believe will be useful because, in addition to shortening research times, these studies provide much additional information aside from the toxicity of drug candidate compounds. These in vivo models include zebrafish, Artemia salina, Galleria mellonella, Drosophila melanogaster, planarians, and Caenorhabditis elegans as highlights. The most published ones in the last decade were zebrafish, D. melanogaster and C. elegans due to their reliability, ease and cost-effectiveness of implementation and flexibility. Special attention is given to C. elegans because of its rising popularity, a wide range of uses including toxicity screening, and active effects measurement, from antioxidant effects to anthelmintic and antimicrobial activities, and its fast and reliable results. Over time, C. elegans also became a viable high-throughput (HTS) automated drug screening option. Additionally, this manuscript lists briefly the other screening methods used for the initial toxicological analyses and the role of alternative in vivo methods in these scenarios, classifying them as in silico, in vitro and alternative in vivo models, the latter of which have been receiving a growing increase in interest in recent years.
Collapse
Affiliation(s)
- Gabriela Göethel
- Laboratório de Toxicologia (LATOX). Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Lucas Volnei Augsten
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Gustavo Machado das Neves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Itamar Luís Gonçalves
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - João Pedro Silveira de Souza
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX). Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| | - Vera Lucia Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal (LaSOM), Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre - RS, Brazil
| |
Collapse
|
10
|
Yang Q, Ouyang J, Pi D, Feng L, Yang J. Malassezia in Inflammatory Bowel Disease: Accomplice of Evoking Tumorigenesis. Front Immunol 2022; 13:846469. [PMID: 35309351 PMCID: PMC8931276 DOI: 10.3389/fimmu.2022.846469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that patients with inflammatory bowel disease (IBD) have a significantly higher risk of developing different cancers, while the exact mechanism involved is not yet fully understood. Malassezia is a lipid-dependent opportunistic yeast, which colonizes on mammalian skin and internal organs. Also, dysbiosis in fungal communities accompanied by high level of Malassezia are fairly common in inflammatory diseases such as IBD and various cancers. In cancer patients, higher levels of Malassezia are associated with worse prognosis. Once it is ablated in tumor-bearing mice, their prognostic conditions will be improved. Moreover, Malassezia manifests multiple proinflammatory biological properties, such as destruction of epithelial barrier, enrichment of inflammatory factors, and degradation of extracellular matrix (ECM), all of which have been reported to contribute to tumor initiation and malignant progression. Based on these facts, we hypothesize that high levels of Malassezia together with mycobiome dysbiosis in patients with IBD, would aggravate the microecological imbalance, worsen the inflammatory response, and further promote tumorigenesis and deterioration. Herein, we will discuss the detrimental properties of Malassezia and explore the key role of this fungus in the correlation between IBD and cancer, in order to take early surveillance and intervention to minimize the cancer risk in individuals with IBD.
Collapse
Affiliation(s)
- Qiyu Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Feng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Feng, ; Jiadan Yang,
| |
Collapse
|
11
|
Cui Z, Zhang M, Geng S, Niu X, Wang X, Zhu Y, Ye F, Liu C. Antifungal Effect of Antimicrobial Photodynamic Therapy Mediated by Haematoporphyrin Monomethyl Ether and Aloe Emodin on Malassezia furfur. Front Microbiol 2021; 12:749106. [PMID: 34867868 PMCID: PMC8637056 DOI: 10.3389/fmicb.2021.749106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Infectious dermatological diseases caused by Malassezia furfur are often chronic, recurrent, and recalcitrant. Current therapeutic options are usually tedious, repetitive, and associated with adverse effects. Alternatives that broaden the treatment options and reduce side effects for patients are needed. Antimicrobial photodynamic therapy (aPDT) is an emerging approach that is quite suitable for superficial infections. The aim of this study is to investigate the antimicrobial efficacy and effect of aPDT mediated by haematoporphyrin monomethyl ether (HMME) and aloe emodin (AE) on clinical isolates of M. furfur in vitro. The photodynamic antimicrobial efficacy of HMME and AE against M. furfur was assessed by colony forming unit (CFU) assay. The uptake of HMME and AE by M. furfur cells was investigated by fluorescence microscopy. Reactive oxygen species (ROS) probe and flow cytometry were employed to evaluate the intracellular ROS level. The effect of HMME and AE-mediated aPDT on secreted protease and lipase activity of M. furfur was also investigated. The results showed that HMME and AE in the presence of light effectively inactivated M. furfur cells in a photosensitizer (PS) concentration and light energy dose-dependent manner. AE exhibited higher antimicrobial efficacy against M. furfur than HMME under the same irradiation condition. HMME and AE-mediated aPDT disturbed the fungal cell envelop, significantly increased the intracellular ROS level, and effectively inhibited the activity of secreted protease and lipase of M. furfur cells. The results suggest that HMME and AE have potential to serve as PSs in the photodynamic treatment of dermatological diseases caused by M. furfur, but further ex vivo or in vivo experiments are needed to verify that they can meet the requirements for clinical practice.
Collapse
Affiliation(s)
- Zixin Cui
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinwu Niu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Zhu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Ye
- Department of Infection, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
12
|
Mangion SE, Holmes AM, Roberts MS. Targeted Delivery of Zinc Pyrithione to Skin Epithelia. Int J Mol Sci 2021; 22:9730. [PMID: 34575891 PMCID: PMC8465279 DOI: 10.3390/ijms22189730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Zinc pyrithione (ZnPT) is an anti-fungal drug delivered as a microparticle to skin epithelia. It is one of the most widely used ingredients worldwide in medicated shampoo for treating dandruff and seborrheic dermatitis (SD), a disorder with symptoms that include skin flaking, erythema and pruritus. SD is a multi-factorial disease driven by microbiol dysbiosis, primarily involving Malassezia yeast. Anti-fungal activity of ZnPT depends on the cutaneous availability of bioactive monomeric molecular species, occurring upon particle dissolution. The success of ZnPT as a topical therapeutic is underscored by the way it balances treatment efficacy with formulation safety. This review demonstrates how ZnPT achieves this balance, by integrating the current understanding of SD pathogenesis with an up-to-date analysis of ZnPT pharmacology, therapeutics and toxicology. ZnPT has anti-fungal activity with an average in vitro minimum inhibitory concentration of 10-15 ppm against the most abundant scalp skin Malassezia species (Malassezia globosa and Malassezia restrica). Efficacy is dependent on the targeted delivery of ZnPT to the skin sites where these yeasts reside, including the scalp surface and hair follicle infundibulum. Imaging and quantitative analysis tools have been fundamental for critically evaluating the therapeutic performance and safety of topical ZnPT formulations. Toxicologic investigations have focused on understanding the risk of local and systemic adverse effects following exposure from percutaneous penetration. Future research is expected to yield further advances in ZnPT formulations for SD and also include re-purposing towards a range of other dermatologic applications, which is likely to have significant clinical impact.
Collapse
Affiliation(s)
- Sean E. Mangion
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| | - Amy M. Holmes
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia; (S.E.M.); (A.M.H.)
- Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
- Therapeutics Research Centre, Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
13
|
Bourret V, Gutiérrez López R, Melo M, Loiseau C. Metabarcoding options to study eukaryotic endoparasites of birds. Ecol Evol 2021; 11:10821-10833. [PMID: 34429884 PMCID: PMC8366860 DOI: 10.1002/ece3.7748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
There is growing interest in the study of avian endoparasite communities, and metabarcoding is a promising approach to complement more conventional or targeted methods. In the case of eukaryotic endoparasites, phylogenetic diversity is extreme, with parasites from 4 kingdoms and 11 phyla documented in birds. We addressed this challenge by comparing different primer sets across 16 samples from 5 bird species. Samples consisted of blood, feces, and controlled mixes with known proportions of bird and nematode DNA. Illumina sequencing revealed that a 28S primer set used in combination with a custom blocking primer allowed detection of various plasmodiid parasites and filarioid nematodes in the blood, coccidia in the feces, as well as two potentially pathogenic fungal groups. When tested on the controlled DNA mixes, these primers also increased the proportion of nematode DNA by over an order of magnitude. An 18S primer set, originally designed to exclude metazoan sequences, was the most effective at reducing the relative number of avian DNA sequences and was the only one to detect Trypanosoma in the blood. Expectedly, however, it did not allow nematode detection and also failed to detect avian malaria parasites. This study shows that a 28S set including a blocking primer allows detection of several major and very diverse bird parasite clades, while reliable amplification of all major parasite groups may require a combination of markers. It helps clarify options for bird parasite metabarcoding, according to priorities in terms of the endoparasite clades and the ecological questions researchers wish to focus on.
Collapse
Affiliation(s)
- Vincent Bourret
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Rafael Gutiérrez López
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Martim Melo
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- MHNC‐UP – Natural History and Science Museum of the University of PortoPortoPortugal
- FitzPatrick Institute of African OrnithologyUniversity of Cape TownCape TownSouth Africa
| | - Claire Loiseau
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- CEFEUniversité de MontpellierCNRSMontpellierFrance
| |
Collapse
|