1
|
Shehab WS, Elsayed DA, Abdel Hamid AM, Assy MG, Mouneir SM, Hamed EO, Mousa SM, El-Bassyouni GT. CuO nanoparticles for green synthesis of significant anti-Helicobacter pylori compounds with in silico studies. Sci Rep 2024; 14:1608. [PMID: 38238369 PMCID: PMC10796945 DOI: 10.1038/s41598-024-51708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a universal health intimidation as mentioned by the World Health Organization. The primary causal agent linked to a number of illnesses, including inflammation and the development of stomach ulcers, is Helicobacter pylori. Since, H. pylori develops antibiotic resistance quickly, current H. pylori treatment approaches are becoming less effective. Our research aims to highlight novel formulation antibiotics using CuO-NPs as catalysts and studied their activity as anti-helicobacter pylori supported by computational studies (POM analysis and molecular docking) software. They were designed for anti-Helicobacter Pylori action. All compounds revealed a bactericidal effect better than the reference McFarland standards.
Collapse
Grants
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Open access funding provided by Te Science, Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB).
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- STDF Technology & Innovation Funding Authority (STDF) in cooperation with Te Egyptian Knowledge Bank (EKB)., STDF
- Zagazig University
Collapse
Affiliation(s)
- Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa A Elsayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Eman O Hamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Sahar M Mousa
- Inorganic Chemistry Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Gehan T El-Bassyouni
- Ceramics and Building Materials Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Cui TM, Altaf M, Aldarhami A, Bazaid AS, Saeedi NH, Alkayyal AA, Alshabrmi FM, Ali F, Aladhadh M, Khan MY, Alsaiari AA, Ma YR. Dihydropyrimidone Derivatives as Thymidine Phosphorylase Inhibitors: Inhibition Kinetics, Cytotoxicity, and Molecular Docking. Molecules 2023; 28:molecules28083634. [PMID: 37110867 PMCID: PMC10143232 DOI: 10.3390/molecules28083634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Overexpression of the thymidine phosphorylase (TP) enzyme induces angiogenesis, which eventually leads to metastasis and tumor growth. The crucial role of TP in cancer development makes it an important target for anticancer drug discovery. Currently, there is only one US-FDA-approved drug, i.e., Lonsurf, a combination of trifluridine and tipiracil, for the treatment of metastatic colorectal cancer. Unfortunately, numerous adverse effects are associated with its use, such as myelosuppression, anemia, and neutropenia. Since the last few decades, the discovery of new, safe, and effective TP inhibitory agents has been rigorously pursued. In the present study, we evaluated a series of previously synthesized dihydropyrimidone derivatives 1-40 for their TP inhibitory potential. Compounds 1, 12, and 33 showed a good activity with IC50 = 314.0 ± 0.90, 303.5 ± 0.40, and 322.6 ± 1.60 µM, respectively. The results of mechanistic studies revealed that compounds 1, 12, and 33 were the non-competitive inhibitors. These compounds were also evaluated for cytotoxicity against 3T3 (mouse fibroblast) cells and were found to be non-cytotoxic. Finally, the molecular docking suggested the plausible mechanism of non-competitive inhibition of TP. The current study thus identifies some dihydropyrimidone derivatives as potential inhibitors of TP, which can be further optimized as leads for cancer treatment.
Collapse
Affiliation(s)
- Tian-Meng Cui
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Muhammad Altaf
- Department of Biochemistry, Federal Urdu University of Arts, Sciences and Technology, Karachi 75300, Pakistan
| | - Abdu Aldarhami
- Department of Medical Microbiology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah 21961, Saudi Arabia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
| | - Nizar H Saeedi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Farman Ali
- Department of Chemistry, Federal Urdu University of Arts, Sciences and Technology, Karachi 75300, Pakistan
| | - Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Muhammad Yasir Khan
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccine and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Yue-Rong Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
3
|
Conrad KA, Kim H, Qasim M, Djehal A, Hernday AD, Désaubry L, Rauceo JM. Triazine-Based Small Molecules: A Potential New Class of Compounds in the Antifungal Toolbox. Pathogens 2023; 12:126. [PMID: 36678474 PMCID: PMC9861074 DOI: 10.3390/pathogens12010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections caused by Candida species remain a significant public health problem worldwide. The increasing prevalence of drug-resistant infections and a limited arsenal of antifungal drugs underscore the need for novel interventions. Here, we screened several classes of pharmacologically active compounds against mammalian diseases for antifungal activity. We found that the synthetic triazine-based compound melanogenin (Mel) 56 is fungicidal in Candida albicans laboratory and clinical strains with minimal inhibitory concentrations of 8−16 µg/mL. Furthermore, Mel56 has general antifungal activity in several non-albicans Candida species and the non-pathogenic yeast Saccharomyces cerevisiae. Surprisingly, Mel56 inhibited the yeast-to-hyphae transition at sublethal concentrations, revealing a new role for triazine-based compounds in fungi. In human cancer cell lines, Mel56 targets the inner mitochondrial integral membrane prohibitin proteins, PHB1 and PHB2. However, Mel56 treatment did not impact C. albicans mitochondrial activity, and antifungal activity was similar in prohibitin single, double, and triple homozygous mutant strains compared to the wild-type parental strain. These results suggests that Mel56 has a novel mechanism-of-action in C. albicans. Therefore, Mel56 is a promising antifungal candidate warranting further analyses.
Collapse
Affiliation(s)
- Karen A. Conrad
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| | - Hyunjeong Kim
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Amel Djehal
- Higher National School of Biotechnology of Constantine, Constantine 25100, Algeria
- Laboratory of Regenerative Nanomedicine, Center of Research and Biomedicine, University of Strasbourg, 67000 Strasbourg, France
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine, Center of Research and Biomedicine, University of Strasbourg, 67000 Strasbourg, France
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City, University of New York, New York, NY 10019, USA
| |
Collapse
|
4
|
Hamed EO, Elsayed DA, Assy MG, Shehab WS. Design, Synthesis, Docking, 2D‐QSAR Modelling, Anticancer and Antioxidant Evaluation of Some New Azo‐Compounds Derivatives and Investigation of Their Fluorescence Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202202534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eman O. Hamed
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| | - Doaa A. Elsayed
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| | - Mohamed G. Assy
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| | - Wesam S. Shehab
- Department of Chemistry Faculty of Science Zagazig University Zagazig 44519 Egypt
| |
Collapse
|
5
|
Xie F, Hao Y, Liu J, Bao J, Ni T, Liu Y, Chi X, Wang T, Yu S, Jin Y, Li L, Zhang D, Yan L. Discovery of Novel Thiosemicarbazides Containing 1,3,5-Triazines Derivatives as Potential Synergists against Fluconazole-Resistant Candida albicans. Pharmaceutics 2022; 14:2334. [PMID: 36365153 PMCID: PMC9693882 DOI: 10.3390/pharmaceutics14112334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2023] Open
Abstract
The clinical prevalence of antifungal drug resistance has been increasing over recent years, resulting in the failure of treatments. In an attempt to overcome this critical problem, we sought novel synergistic enhancers to restore the effectiveness of fluconazole against resistant Candida albicans. Based on the structural optimization of hit compound 8 from our in-house library, a series of novel 1,3,5-triazines derivatives was designed, synthesized, and biologically evaluated for synergistic activity in combination with fluconazole. Among them, compounds 10a-o, which contain thiosemicarbazides side chains, exhibited excellent in vitro synergistic antifungal potency (MIC80 = 0.125-2.0 μg/mL, FICI range from 0.127 to 0.25). Interestingly, compound 10l exhibited moderate C. albicans activity as monotherapy with an MIC80 value of 4.0 μg/mL, and also on several Cryptococcus strains (MIC80 ranging from ≤ 0.125-0.5 μg/mL) and C. glabrata (MIC80 ≤ 0.125 μg/mL). These effects were fungal-selective, with much lower levels of cytotoxicity towards human umbilical vein endothelial cells. Here, we report a series of thiosemicarbazides containing 1,3,5-triazines derivatives as potent synergists with fluconazole, and have preliminarily validated compound 10l as a promising antifungal lead for further investigation.
Collapse
Affiliation(s)
- Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Jiacun Liu
- Center of New Drug Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Yu Liu
- Center of New Drug Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
6
|
Shawish I, Barakat A, Aldalbahi A, Alshaer W, Daoud F, Alqudah DA, Al Zoubi M, Hatmal MM, Nafie MS, Haukka M, Sharma A, de la Torre BG, Albericio F, El-Faham A. Acetic Acid Mediated for One-Pot Synthesis of Novel Pyrazolyl s-Triazine Derivatives for the Targeted Therapy of Triple-Negative Breast Tumor Cells (MDA-MB-231) via EGFR/PI3K/AKT/mTOR Signaling Cascades. Pharmaceutics 2022; 14:pharmaceutics14081558. [PMID: 36015186 PMCID: PMC9414415 DOI: 10.3390/pharmaceutics14081558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Here, we described the synthesis of novel pyrazole-s-triazine derivatives via an easy one-pot procedure for the reaction of β-dicarbonyl compounds (ethylacetoacetate, 5,5-dimethyl-1,3-cyclohexadione or 1,3-cyclohexadionone) with N,N-dimethylformamide dimethylacetal, followed by addition of 2-hydrazinyl-4,6-disubstituted-s-triazine either in ethanol-acetic acid or neat acetic acid to afford a novel pyrazole and pyrazole-fused cycloalkanone systems. The synthetic protocol proved to be efficient, with a shorter reaction time and high chemical yield with broad substrates. The new pyrazolyl-s-triazine derivatives were tested against the following cell lines: MCF-7 (breast cancer); MDA-MB-231 (triple-negative breast cancer); U-87 MG (glioblastoma); A549 (non-small cell lung cancer); PANC-1 (pancreatic cancer); and human dermal fibroblasts (HDFs). The cell viability assay revealed that most of the s-triazine compounds induced cytotoxicity in all the cell lines tested. However, compounds 7d, 7f and 7c, which all have a piperidine or morpholine moiety with one aniline ring or two aniline rings in their structures, were the most effective. Compounds 7f and 7d showed potent EGFR inhibitory activity with IC50 values of 59.24 and 70.3 nM, respectively, compared to Tamoxifen (IC50 value of 69.1 nM). Compound 7c exhibited moderate activity, with IC50 values of 81.6 nM. Interestingly, hybrids 7d and 7f exerted remarkable PI3K/AKT/mTOR inhibitory activity with 0.66/0.82/0.80 and 0.35/0.56/0.66-fold, respectively, by inhibiting their concentrations to 4.39, 37.3, and 69.3 ng/mL in the 7d-treatment, and to 2.39, 25.34 and 57.6 ng/mL in the 7f-treatment compared to the untreated control.
Collapse
Affiliation(s)
- Ihab Shawish
- Department of Math and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence: (A.B.); (F.A.); or (A.E.-F.)
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Fadwa Daoud
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (W.A.); (F.D.); (D.A.A.)
| | - Mazhar Al Zoubi
- Department of Basic Medical Sciences, Faculty of Sciences, Yarmouk University, Irbid 21163, Jordan;
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Anamika Sharma
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (A.S.); (B.G.d.l.T.)
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Correspondence: (A.B.); (F.A.); or (A.E.-F.)
| | - Ayman El-Faham
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt
- Correspondence: (A.B.); (F.A.); or (A.E.-F.)
| |
Collapse
|
7
|
The Antiproliferative and Apoptotic Effect of a Novel Synthesized S-Triazine Dipeptide Series, and Toxicity Screening in Zebrafish Embryos. Molecules 2021; 26:molecules26041170. [PMID: 33671801 PMCID: PMC7926980 DOI: 10.3390/molecules26041170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Several derivatives containing morpholine/piperidine, anilines, and dipeptides as pending moieties were prepared using s-triazine as a scaffold. These compounds were evaluated for their anticancer activity against two human breast cancer cell lines (MCF-7 and MDA-MB-231), a colon cancer cell line (HCT-116), and a non-tumorigenic cell line (HEK 293). Tamoxifen was used as a reference. Animal toxicity tests were carried out in zebrafish embryos. Most of these compounds showed a higher activity against breast cancer than colon cancer. Compound 3a-which contains morpholine, aniline, and glycylglycinate methyl ester-showed a high level of cytotoxicity against MCF-7 cells with IC50 values of less than 1 µM. This compound showed a much lower level of toxicity against the non-tumorigenic HEK-293 cell line, and in the in vivo studies using zebrafish embryos. Furthermore, it induced cell cycle arrest at the G2/M phase, and apoptosis in MCF-7 cells. On the basis of our results, 3a emerges as a potential candidate for further development as a therapeutic drug to treat hormone receptor-positive breast cancer.
Collapse
|
8
|
Sharma A, Sheyi R, de la Torre BG, El-Faham A, Albericio F. s-Triazine: A Privileged Structure for Drug Discovery and Bioconjugation. Molecules 2021; 26:864. [PMID: 33562072 PMCID: PMC7914932 DOI: 10.3390/molecules26040864] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/28/2022] Open
Abstract
This review provides an overview of the broad applicability of s-triazine. Our many years working with this intriguing moiety allow us to discuss its wide activity spectrum (inhibition against MAO-A and -B, anticancer/antiproliferative and antimicrobial activity, antibacterial activity against MDR clinical isolates, antileishmanial agent, and use as drug nano delivery system). Most of the compounds addressed in our studies and those performed by other groups contain only N-substitution. Exploiting the concept of orthogonal chemoselectivity, first described by our group, we have successfully incorporated different nucleophiles in different orders into s-triazine core for application in peptides/proteins at a temperature compatible with biological systems.
Collapse
Affiliation(s)
- Anamika Sharma
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (A.S.); (R.S.); (B.G.d.l.T.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rotimi Sheyi
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (A.S.); (R.S.); (B.G.d.l.T.)
| | - Beatriz G. de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (A.S.); (R.S.); (B.G.d.l.T.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 12321, Egypt
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa; (A.S.); (R.S.); (B.G.d.l.T.)
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN (Networking Centre on Bioengineering, Biomaterials and Nanomedicine) and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|