1
|
Demková L, Šnirc M, Jančo I, Harangozo Ľ, Hauptvogl M, Bobuľská L, Kunca V, Árvay J. Blusher mushroom (Amanita rubescens Pers.): A Study of Mercury Content in Substrate and Mushroom Samples from Slovakia with Respect to Locality and Developmental Stages. Biol Trace Elem Res 2024:10.1007/s12011-024-04280-8. [PMID: 38942969 DOI: 10.1007/s12011-024-04280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
The edible mushroom Amanita rubescens Pers., regularly collected and consumed in Slovakia, was assessed for health risk due to the mercury content in its fruiting body parts. For this purpose, 364 both from the soil/substrate and mushroom samples from 40 localities in Slovakia were evaluated. At the same time, 21 samples of 7 developmental stages of the fruiting body of A. rubescens were taken in the Žakýlske pleso locality. The total mercury content in the soil and mushroom samples was determined using an AMA-254 analyzer. The contamination factor (Cf) and index of geoaccumulation (Igeo) were used to detect the level of soil pollution by mercury. The ability of A. rubescens to accumulate mercury from the soil environment was evaluated using the bioconcentration factor (BCF), and the distribution of mercury in the mushroom body was evaluated using the translocation quotient (Qc/s). To determine the health risks resulting from mushroom consumption, the percentages of provisional tolerable weekly intake (%PTWI) and target hazard quotient (THQ) were used. The obtained results have confirmed serious content of mercury soil pollution, especially in former mining areas, where the situation is alarming from a health risk point of view. Consumption of A. rubescens was found to be risky, not only in former mining areas, but higher values of mercury were also detected in other parts of Slovakia. Evaluation of the developmental stages of the fruiting body of A. rubescens showed that the highest bioconcentration factor was determined at developmental stage no. VI for caps with a value of 2.47 mg kg-1 and developmental stage VII for stipes with a value of 1.65 mg kg-1 DW.
Collapse
Affiliation(s)
- Lenka Demková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 081 16, Prešov, Slovak Republic
| | - Marek Šnirc
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Ivona Jančo
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Ľuboš Harangozo
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Martin Hauptvogl
- Department of Sustainable Development, Faculty of European Studies and Regional Development, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Lenka Bobuľská
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, 17. Novembra 1, 081 16, Prešov, Slovak Republic
| | - Vladimír Kunca
- Department of Applied Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, T. G. Masaryka 24, 960 01, Zvolen, Slovak Republic
| | - Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| |
Collapse
|
2
|
Zeb U, Aziz T, Azizullah A, Zan XY, Khan AA, Bacha SAS, Cui FJ. Complete mitochondrial genomes of edible mushrooms: features, evolution, and phylogeny. PHYSIOLOGIA PLANTARUM 2024; 176:e14363. [PMID: 38837786 DOI: 10.1111/ppl.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 06/07/2024]
Abstract
Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.
Collapse
Affiliation(s)
- Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, PR China
| | - Azizullah Azizullah
- Faculty of Biological and Biomedical Science, Department of Biology, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Asif Ali Khan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Syed Asim Shah Bacha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
3
|
Liu H, Liu H, Li J, Wang Y. Rapid and Accurate Authentication of Porcini Mushroom Species Using Fourier Transform Near-Infrared Spectra Combined with Machine Learning and Chemometrics. ACS OMEGA 2023; 8:19663-19673. [PMID: 37305306 PMCID: PMC10249093 DOI: 10.1021/acsomega.3c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Porcini mushrooms have high nutritional value and great potential, but different species are easily confused, so it is essential to identify them rapidly and precisely. The diversity of nutrients in stipe and cap will lead to differences in spectral information. In this research, Fourier transform near-infrared (FT-NIR) spectral information about imparity species of porcini mushroom stipe and cap was collected and combined into four data matrices. FT-NIR spectra of four data sets were combined with chemometric methods and machine learning for accurate evaluation and identification of different porcini mushroom species. From the results: (1) improved visualization level of t-distributed stochastic neighbor embedding (t-SNE) results after the second derivative preprocessing compared with raw spectra; (2) after using multiple pretreatment combinations to process the four data matrices, the model accuracies based on support vector machine and partial least-square discriminant analysis (PLS-DA) under the best preprocessing method were 98.73-99.04% and 98.73-99.68%, respectively; (3) by comparing the modeling results of FT-NIR spectra with different data matrices, it was found that the PLS-DA model based on low-level data fusion has the highest accuracy (99.68%), but residual neural network (ResNet) model based on the stipe, cap, and average spectral data matrix worked better (100% accuracy). The above results suggest that distinct models should be selected for dissimilar spectral data matrices of porcini mushrooms. Additionally, FT-NIR spectra have the advantages of being nondevastate and fast; this method is expected to be a promising analytical tool in food safety control.
Collapse
Affiliation(s)
- Hong Liu
- College
of Agronomy and Biotechnology, Yunnan Agricultural
University, Kunming 650201, China
- Medicinal
Plants Research Institute, Yunnan Academy
of Agricultural Sciences, Kunming 650200, China
| | - Honggao Liu
- Yunnan
Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China
| | - Jieqing Li
- College
of Agronomy and Biotechnology, Yunnan Agricultural
University, Kunming 650201, China
| | - Yuanzhong Wang
- Medicinal
Plants Research Institute, Yunnan Academy
of Agricultural Sciences, Kunming 650200, China
| |
Collapse
|
4
|
Giusti A, Ricci E, Tinacci L, Verdigi F, Narducci R, Gasperetti L, Armani A. Molecular authentication of mushroom products: First survey on the Italian market. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Morphology and Phylogeny of Lyophylloid Mushrooms in China with Description of Four New Species. J Fungi (Basel) 2023; 9:jof9010077. [PMID: 36675898 PMCID: PMC9864836 DOI: 10.3390/jof9010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
The lyophylloid agarics are a group of ecologically highly diversified macrofungi, some of which are very popular edible mushrooms. However, we know little about lyophylloid species diversity in China. In this study, we described four new species from China: Lyophyllum atrofuscum, L. subalpinarum, L. subdecastes, and Ossicaulis sichuanensis. We conducted molecular phylogenetic analyses of Lyophyllaceae based on the nuclear ribosomal RNA gene (nLSU) and the internal transcribed spacer regions (ITS). Phylogenetic analyses by the maximum likelihood method and Bayesian inference showed that the four new species are unique monophyletic species. A key to the species of Lyophyllum from China and a key to Ossicaulis worldwide were given.
Collapse
|
6
|
Devkota S, Fang W, Arunachalam K, Phyo KMM, Shakya B. Systematic review of fungi, their diversity and role in ecosystem services from the Far Eastern Himalayan Landscape (FHL). Heliyon 2023; 9:e12756. [PMID: 36685357 PMCID: PMC9850047 DOI: 10.1016/j.heliyon.2022.e12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Fungi are morphologically and ecologically diverse kingdom but less explored in the global perspective. This systematic review of mainly higher fungi (mushrooms) and lichenized fungi (lichens) was aimed to convey comprehensive knowledge on these understudied taxa, especially considering diversity, research trends, taxonomic/geographic knowledge gaps, and their contribution to ecosystem services. We investigated literature from the Far Eastern Himalayas and adjacent areas. We followed the PRISM (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework for the evidence synthesis and reporting. Search strings were used to explore literature both in English and Chinese databases. Publications were validated examining the title, locality, abstract and full text. We included 75 eligible studies after screening 12,872 publications. The result on species diversity extrapolated from literature was consolidated as a species checklist and published on the Global Biodiversity Information Facility (GBIF) portal. This review demonstrates a significant shortage of research work on fungi, and a lack of quantitative data on diversity, ecology, and ecosystem services. Mycological inventories with multidisciplinary perspectives are urgent in the Landscape to better understand the importance of fungi in conservation and sustainable development science. This review is especially useful when global environmental and climate concerns are focused on the use of nature-based solutions, and fungi as integral part of all ecological processes, could play important role in enhancing ecosystem services and therefore benefits coming to people as natural solutions.
Collapse
Affiliation(s)
- Shiva Devkota
- Global Institute for Interdisciplinary Studies (GIIS), Kathmandu, GPO Box 3226, Nepal
- Himalayan Climate and Science Institute (HCSI), Washington DC, USA
| | - Wei Fang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany (KIB), Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany (KIB), Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | | | - Bandana Shakya
- Centre for Integrated Mountain Development (ICIMOD), Khumaltar, Lalitpur, 44700, GPO Box 3226, Nepal
| |
Collapse
|
7
|
Automatic Mushroom Species Classification Model for Foodborne Disease Prevention Based on Vision Transformer. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1173102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mushrooms are the fleshy, spore-bearing structure of certain fungi, produced by a group of mycelia and buried in a substratum. Mushrooms are classified as edible, medicinal, and poisonous. However, many poisoning incidents occur yearly by consuming wild mushrooms. Thousands of poisoning incidents are reported each year globally, and 80% of these are from unidentified species of mushrooms. Mushroom poisoning is one of the most serious food safety issues worldwide. Motivated by this problem, this study uses an open-source mushroom dataset and employs several data augmentation approaches to decrease the probability of model overfitting. We propose a novel deep learning pipeline (ViT-Mushroom) for mushroom classification using the Vision Transformer large network (ViT-L/32). We compared the performance of our method against that of a convolutional neural network (CNN). We visualized the high-dimensional outputs of the ViT-L/32 model to achieve the interpretability of ViT-L/32 using the t-distributed stochastic neighbor embedding (t-SNE) method. The results show that ViT-L/32 is the best on the testing dataset, with an accuracy score of 95.97%. These results surpass previous approaches in reducing intraclass variability and generating well-separated feature embeddings. The proposed method is a promising deep learning model capable of automatically classifying mushroom species, helping wild mushroom consumers avoid eating toxic mushrooms, safeguarding food safety, and preventing public health incidents of food poisoning. The results will offer valuable resources for food scientists, nutritionists, and the public health sector regarding the safety and quality of mushrooms.
Collapse
|
8
|
Dawan J, Ahn J. Application of DNA barcoding for ensuring food safety and quality. Food Sci Biotechnol 2022; 31:1355-1364. [PMID: 36060568 PMCID: PMC9433498 DOI: 10.1007/s10068-022-01143-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
With increasing international food trade, food quality and safety are high priority worldwide. The consumption of contaminated and adulterated food can cause serious health problems such as infectious diseases and allergies. Therefore, the authentication and traceability systems are needed to improve food safety. The mitochondrial DNA can be used for species authentication of food and food products. Effective DNA barcode markers have been developed to correctly identify species. The US FDA approved to the use of DNA barcoding for various food products. The DNA barcoding technology can be used as a regulatory tool for identification and authenticity. The application of DNA barcoding can reduce the microbiological and toxicological risks associated with the consumption of food and food products. DNA barcoding can be a gold-standard method in food authenticity and fraud detection. This review describes the DNA barcoding method for preventing food fraud and adulteration in meat, fish, and medicinal plants.
Collapse
|
9
|
Zhang YZ, Zhang P, Buyck B, Tang LP, Liang ZQ, Su MS, Hao YJ, Huang HY, Zhang WH, Chen ZH, Zeng NK. A Contribution to Knowledge of Craterellus (Hydnaceae, Cantharellales) in China: Three New Taxa and Amended Descriptions of Two Previous Species. Front Microbiol 2022; 13:906296. [PMID: 35903463 PMCID: PMC9325540 DOI: 10.3389/fmicb.2022.906296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Species of Craterellus (Hydnaceae, Cantharellales) in China are investigated on the basis of morphological and molecular phylogenetic analyses of DNA sequences from nuc 28S rDNA D1-D2 domains (28S) and nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 region. Five species are recognized in China, of which three of them are described as new, viz. C. fulviceps, C. minor, and C. parvopullus, while two of them are previously described taxa, viz. C. aureus, and C. lutescens. A key to the known Chinese taxa of the genus is also provided.
Collapse
Affiliation(s)
- Yu-Zhuo Zhang
- College of Science, Hainan University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Ping Zhang
- College of Life Science, Hunan Normal University, Changsha, China
| | - Bart Buyck
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Muséum National d’ Histoire Naturelle, CNRS, Sorbonne Université, Paris, France
| | - Li-Ping Tang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhi-Qun Liang
- College of Science, Hainan University, Haikou, China
| | - Ming-Sheng Su
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yan-Jia Hao
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Hong-Yan Huang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wen-Hao Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zuo-Hong Chen
- College of Life Science, Hunan Normal University, Changsha, China
| | - Nian-Kai Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| |
Collapse
|
10
|
Chen X, Li J, Liu H, Wang Y. A fast multi-source information fusion strategy based on deep learning for species identification of boletes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121137. [PMID: 35290943 DOI: 10.1016/j.saa.2022.121137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Wild mushroom market is an important economic source of Yunnan province in China, and its wild mushroom resources are also valuable wealth in the world. This work will put forward a method of species identification and optimize the method in order to maintain the market order and protect the economic benefits of wild mushrooms. Here we establish deep learning (DL) models based on the two-dimensional correlation spectroscopy (2DCOS) images of near-infrared spectroscopy from boletes, and optimize the identification effect of the model. The results show that synchronous 2DCOS is the best method to establish DL model, and when the learning rate was 0.01, the epochs were 40, using stipes and caps data, the identification effect would be further improved. This method retains the complete information of the samples and can provide a fast and noninvasive method for identifying boletes species for market regulators.
Collapse
Affiliation(s)
- Xiong Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Resources and Environmental, Yunnan Agricultural University, Kunming 650201, China
| | - Honggao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Zhaotong University, Zhaotong 657000, China.
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
11
|
Li H, Xu J, Wang S, Wang P, Rao W, Hou B, Zhang Y. Genetic Differentiation and Widespread Mitochondrial Heteroplasmy among Geographic Populations of the Gourmet Mushroom Thelephora ganbajun from Yunnan, China. Genes (Basel) 2022; 13:genes13050854. [PMID: 35627240 PMCID: PMC9141859 DOI: 10.3390/genes13050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial genomes are generally considered non-recombining and homoplasmic in nature. However, our previous study provided the first evidence of extensive and stable mitochondrial heteroplasmy in natural populations of the basidiomycete fungus Thelephora ganbajun from Yunnan province, China. The heteroplasmy was characterized by the presence of two types of introns residing at adjacent but different sites in the cytochrome oxidase subunits I (cox1) gene within an individual strain. However, the frequencies of these two introns among isolates from different geographical populations and the implications for the genetic structure in natural populations have not been investigated. In this study, we analyzed DNA sequence variation at the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster among 489 specimens from 30 geographic locations from Yunnan and compared that variation with distribution patterns of the two signature introns in the cox1 gene that are indicative of heteroplasmy in this species. In our samples, evidence for gene flow, abundant genetic diversity, and genotypic uniqueness among geographic samples in Yunnan were revealed by ITS sequence variation. While there was insignificant positive correlation between geographic distance and genetic differentiation among the geographic samples based on ITS sequences, a moderate significant correlation was found between ITS sequence variation, geographical distance of sampling sites, and distribution patterns of the two heteroplasmic introns in the cox1 gene. Interestingly, there was a significantly negative correlation between the copy numbers of the two co-existing introns. We discussed the implications of our results for a better understanding of the spread of stable mitochondrial heteroplasmy, mito-nuclear interactions, and conservation of this important gourmet mushroom.
Collapse
Affiliation(s)
- Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Bin Hou
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Correspondence:
| |
Collapse
|
12
|
Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. SUSTAINABILITY 2022. [DOI: 10.3390/su14094941] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global food production faces many challenges, including climate change, a water crisis, land degradation, and desertification. These challenges require research into non-traditional sources of human foods. Edible mushrooms are considered an important next-generation healthy food source. Edible mushrooms are rich in proteins, dietary fiber, vitamins, minerals, and other bioactive components (alkaloids, lactones, polysaccharides, polyphenolic compounds, sesquiterpenes, sterols, and terpenoids). Several bioactive ingredients can be extracted from edible mushrooms and incorporated into health-promoting supplements. It has been suggested that several human diseases can be treated with extracts from edible mushrooms, as these extracts have biological effects including anticancer, antidiabetic, antiviral, antioxidant, hepatoprotective, immune-potentiating, and hypo-cholesterolemic influences. The current study focuses on sustainable approaches for handling edible mushrooms and their secondary metabolites, including biofortification. Comparisons between edible and poisonous mushrooms, as well as the common species of edible mushrooms and their different bioactive ingredients, are crucial. Nutritional values and the health benefits of edible mushrooms, as well as different biomedical applications, have been also emphasized. Further research is needed to explore the economic sustainability of different medicinal mushroom bioactive compound extracts and their potential applications against emerging diseases such as COVID-19. New approaches such as nano-biofortification are also needed to supply edible mushrooms with essential nutrients and/or to increase their bioactive ingredients.
Collapse
|
13
|
Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation. SUSTAINABILITY 2022. [DOI: 10.3390/su14063667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The field of biotechnology presents us with a great chance to use many organisms, such as mushrooms, to find suitable solutions for issues that include the accumulation of agro-wastes in the environment. The green biotechnology of mushrooms (Pleurotus ostreatus L.) includes the myco-remediation of polluted soil and water as well as bio-fermentation. The circular economy approach could be effectively achieved by using oyster mushrooms (Pleurotus ostreatus L.), of which the substrate of their cultivation is considered as a vital source for producing biofertilizers, animal feeds, bioenergy, and bio-remediators. Spent mushroom substrate is also considered a crucial source for many applications, including the production of enzymes (e.g., manganese peroxidase, laccase, and lignin peroxidase) and bioethanol. The sustainable management of agro-industrial wastes (e.g., plant-based foods, animal-based foods, and non-food industries) could reduce, reuse and recycle using oyster mushrooms. This review aims to focus on the biotechnological applications of the oyster mushroom (P. ostreatus L.) concerning the field of the myco-remediation of pollutants and the bio-fermentation of agro-industrial wastes as a sustainable approach to environmental protection. This study can open new windows onto the green synthesis of metal-nanoparticles, such as nano-silver, nano-TiO2 and nano-ZnO. More investigations are needed concerning the new biotechnological approaches.
Collapse
|
14
|
Dai Q, Zhang FL, Li ZH, He J, Feng T. Immunosuppressive Sesquiterpenoids from the Edible Mushroom Craterellus odoratus. J Fungi (Basel) 2021; 7:jof7121052. [PMID: 34947034 PMCID: PMC8707212 DOI: 10.3390/jof7121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The aim of this work was to comprehensively understand the chemical constituents of the edible mushroom Craterellus ordoratus and their bioactivity. A chemical investigation on this mushroom led to the isolation of 23 sesquiterpenoids including eighteen previously undescribed bergamotane sesquiterpenes, craterodoratins A–R (1–18), and one new victoxinine derivative, craterodoratin S (19). The new structures were elucidated by detailed interpretation of spectrometric data, theoretical nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) calculations, and single-crystal X-ray crystallographic analysis. Compounds 1 and 2 possess a ring-rearranged carbon skeleton. Compounds 3, 10, 12–15, 19, 20 and 23 exhibit potent inhibitory activity against the lipopolysaccharide (LPS)-induced proliferation of B lymphocyte cells with the IC50 values ranging from 0.67 to 22.68 μM. Compounds 17 and 20 inhibit the concanavalin A (ConA)-induced proliferation of T lymphocyte cell with IC50 values of 31.50 and 0.98 μM, respectively. It is suggested that C. ordoratus is a good source for bergamotane sesquiterpenoids, and their immunosuppressive activity was reported for the first time. This research is conducive to the further development and utilization of C. ordoratus.
Collapse
Affiliation(s)
- Quan Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Fa-Lei Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Zheng-Hui Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (J.H.); (T.F.)
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (Q.D.); (F.-L.Z.); (Z.-H.L.)
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (J.H.); (T.F.)
| |
Collapse
|
15
|
Zhou D, Xu J, Dong J, Li H, Wang D, Gu J, Zhang KQ, Zhang Y. Historical Differentiation and Recent Hybridization in Natural Populations of the Nematode-Trapping Fungus Arthrobotrys oligospora in China. Microorganisms 2021; 9:1919. [PMID: 34576814 PMCID: PMC8465350 DOI: 10.3390/microorganisms9091919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Maintaining the effects of nematode-trapping fungi (NTF) agents in order to control plant-parasitic nematodes (PPNs) in different ecological environments has been a major challenge in biological control applications. To achieve such an objective, it is important to understand how populations of the biocontrol agent NTF are geographically and ecologically structured. A previous study reported evidence for ecological adaptation in the model NTF species Arthrobotrys oligospora. However, their large-scale geographic structure, patterns of gene flow, their potential phenotypic diversification, and host specialization remain largely unknown. In this study, we developed a new panel of 20 polymorphic short tandem repeat (STR) markers and analyzed 239 isolates of A. oligospora from 19 geographic populations in China. In addition, DNA sequences at six nuclear gene loci and strain mating types (MAT) were obtained for these strains. Our analyses suggest historical divergence within the A. oligospora population in China. The genetically differentiated populations also showed phenotypic differences that may be related to their ecological adaptations. Interestingly, our analyses identified evidence for recent dispersion and hybridization among the historically subdivided geographic populations in nature. Together, our results indicate a changing population structure of A. oligospora in China and that care must be taken in selecting the appropriate strains as biocontrol agents that can effectively reproduce in agriculture soil while maintaining their nematode-trapping ability.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianyong Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Juan Gu
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| |
Collapse
|
16
|
Štefániková J, Martišová P, Šnirc M, Kunca V, Árvay J. The Effect of Amanita rubescens Pers Developmental Stages on Aroma Profile. J Fungi (Basel) 2021; 7:jof7080611. [PMID: 34436150 PMCID: PMC8397175 DOI: 10.3390/jof7080611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
The dichloromethane extraction was applied to extracted volatile compounds of the six developmental stages of caps and stipes of an Amanita rubescens mushroom and the relative contents were measured with the gas chromatography-mass spectrometry. The number of identified compounds ranged between 53 and 52, respectively, with a high ratio of alkane volatiles. The significant differences between the aroma compounds were determined in caps to identify their stages of development. The fully mature stage caps were characterized by 4,6-dimethyl-dodecane (7.69 ± 1.15%), 2-hexyl-1-decanol (11.8 ± 1.61%), 1,3-di-tert-butylbenzene (11.4 ± 1.25%), heptadecyl pentadecafluorooctanoate (2.16 ± 0.31%), and 2-hexyl-1-dodecanol (13.5 ± 1.33%). Niacinamide (3.90 ± 0.07%) and glycerol (3.62 ± 1.27%) was present in the caps in the early-stage of the rotting mushroom, which represented the 10th-12th day of fructification. The caps and stipes from the 12th-15th day of fructification were characterized by 2,3-butanediol (11.7 ± 0.13% and 8.00 ± 0.10%, respectively). Moreover, the caps from this developmental stage were characterized by 2-methyl- and 3-methyl butanoic acids (0.18 ± 0.03% and 0.33 ± 0.02%, respectively) which are typical for the rotting stage. In this study, we confirmed the effect of A. rubescens developmental stages on the aroma profile.
Collapse
Affiliation(s)
- Jana Štefániková
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Correspondence: ; Tel.: +421-37-641-4911
| | - Patrícia Martišová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Marek Šnirc
- Department of Chemistry, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.Š.); (J.Á.)
| | - Vladimír Kunca
- Department of Applied Ecology, Faculty of Ecology and Environmental Science, Technical University in Zvolen, Ul. T. G. Masaryka 24, 960 01 Zvolen, Slovakia;
| | - Július Árvay
- Department of Chemistry, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.Š.); (J.Á.)
| |
Collapse
|
17
|
Zhang Y, Wang S, Li H, Liu C, Mi F, Wang R, Mo M, Xu J. Evidence for Persistent Heteroplasmy and Ancient Recombination in the Mitochondrial Genomes of the Edible Yellow Chanterelles From Southwestern China and Europe. Front Microbiol 2021; 12:699598. [PMID: 34335532 PMCID: PMC8317506 DOI: 10.3389/fmicb.2021.699598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial genes and genomes have patterns of inheritance that are distinctly different from those of nuclear genes and genomes. In nature, the mitochondrial genomes in eukaryotes are generally considered non-recombining and homoplasmic. If heteroplasmy and recombination exist, they are typically very limited in both space and time. Here we show that mitochondrial heteroplasmy and recombination may not be limited to a specific population nor exit only transiently in the basidiomycete Cantharellus cibarius and related species. These edible yellow chanterelles are an ecologically very important group of fungi and among the most prominent wild edible mushrooms in the Northern Hemisphere. At present, very little is known about the genetics and population biology of these fungia cross large geographical distances. Our study here analyzed a total of 363 specimens of edible yellow chanterelles from 24 geographic locations in Yunnan in southwestern China and six geographic locations in five countries in Europe. For each mushroom sample, we obtained the DNA sequences at two genes, one in the nuclear genome and one in the mitochondrial genome. Our analyses of the nuclear gene, translation elongation factor 1-alpha (tef-1) and the DNA barcode of C. cibarius and related species, suggested these samples belong to four known species and five potential new species. Interestingly, analyses of the mitochondrial ATP synthase subunit 6 (atp6) gene fragment revealed evidence of heteroplasmy in two geographic samples in Yunnan and recombination within the two new putative species in Yunnan. Specifically, all four possible haplotypes at two polymorphic nucleotide sites within the mitochondrial atp6 gene were found distributed across several geographic locations in Yunnan. Furthermore, these four haplotypes were broadly distributed across multiple phylogenetic clades constructed based on nuclear tef-1 sequences. Our results suggest that heteroplasmy and mitochondrial recombination might have happened repeatedly during the evolution of the yellow chanterelles. Together, our results suggest that the edible yellow chanterelles represent an excellent system from which to study the evolution of mitochondrial-nuclear genome relationships.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- Qicai Yunnan Primary School Affiliated with Yunnan Normal University, Kunming, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Chunli Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Kunming Edible Fungi Institute of All-China Federation of Supply and Marketing Cooperatives, Kunming, China
| | - Fei Mi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Research Institute of Nutrition and Food Science, Kunming Medical University, Kunming, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meizi Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Kiran M, Caboň M, Senko D, Khalid AN, Adamčík S. Description of the Fifth New Species of Russula subsect. Maculatinae from Pakistan Indicates Local Diversity Hotspot of Ectomycorrhizal Fungi in Southwestern Himalayas. Life (Basel) 2021; 11:662. [PMID: 34357034 PMCID: PMC8303804 DOI: 10.3390/life11070662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/14/2023] Open
Abstract
Russula subsect. Maculatinae is morphologically and phylogenetically well-defined lineage of ectomycorrhizal fungi associated with arctic, boreal, temperate and Mediterranean habitats of Northern Hemisphere. Based on phylogenetic distance among species, it seems that this group diversified relatively recently. Russula ayubiana sp. nov., described in this study, is the fifth in the group known from relatively small area of northern Pakistan situated in southwestern Himalayas. This is the highest known number of agaric lineage members from a single area in the world. This study uses available data about phylogeny, ecology, and climate to trace phylogenetic origin and ecological preferences of Maculatinae in southwestern Himalayas. Our results suggest that the area has been recently colonised by Maculatinae members migrating from various geographical areas and adapting to local conditions. We also discuss the perspectives and obstacles in research of biogeography and ecology, and we propose improvements that would facilitate the integration of ecological and biogeographical metadata from the future taxonomic studies of fungi in the region.
Collapse
Affiliation(s)
- Munazza Kiran
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
- Institute of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| | - Miroslav Caboň
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
| | - Dušan Senko
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
| | - Abdul Nasir Khalid
- Institute of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
| | - Slavomír Adamčík
- Department of Cryptogams, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-84523 Bratislava, Slovakia; (M.K.); (M.C.); (D.S.)
| |
Collapse
|
19
|
Giusti A, Ricci E, Gasperetti L, Galgani M, Polidori L, Verdigi F, Narducci R, Armani A. Building of an Internal Transcribed Spacer (ITS) Gene Dataset to Support the Italian Health Service in Mushroom Identification. Foods 2021; 10:foods10061193. [PMID: 34070525 PMCID: PMC8227961 DOI: 10.3390/foods10061193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 01/26/2023] Open
Abstract
This study aims at building an ITS gene dataset to support the Italian Health Service in mushroom identification. The target species were selected among those mostly involved in regional (Tuscany) poisoning cases. For each target species, all the ITS sequences already deposited in GenBank and BOLD databases were retrieved and accurately assessed for quality and reliability by a systematic filtering process. Wild specimens of target species were also collected to produce reference ITS sequences. These were used partly to set up and partly to validate the dataset by BLAST analysis. Overall, 7270 sequences were found in the two databases. After filtering, 1293 sequences (17.8%) were discarded, with a final retrieval of 5977 sequences. Ninety-seven ITS reference sequences were obtained from 76 collected mushroom specimens: 15 of them, obtained from 10 species with no sequences available after the filtering, were used to build the dataset, with a final taxonomic coverage of 96.7%. The other 82 sequences (66 species) were used for the dataset validation. In most of the cases (n = 71; 86.6%) they matched with identity values ≥ 97–100% with the corresponding species. The dataset was able to identify the species involved in regional poisoning incidents. As some of these species are also involved in poisonings at the national level, the dataset may be used for supporting the National Health Service throughout the Italian territory. Moreover, it can support the official control activities aimed at detecting frauds in commercial mushroom-based products and safeguarding consumers.
Collapse
Affiliation(s)
- Alice Giusti
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.G.); (A.A.)
- Correspondence: ; Tel.: +39-0502210204
| | - Enrica Ricci
- Experimental Zooprophylactic Institute of Lazio and Tuscany M. Aleandri, UOT Toscana Nord, SS Abetone e Brennero 4, 56124 Pisa, Italy; (E.R.); (L.G.)
| | - Laura Gasperetti
- Experimental Zooprophylactic Institute of Lazio and Tuscany M. Aleandri, UOT Toscana Nord, SS Abetone e Brennero 4, 56124 Pisa, Italy; (E.R.); (L.G.)
| | - Marta Galgani
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.G.); (A.A.)
| | - Luca Polidori
- Tuscany Mycological Groups Association, via Turi, 8 Santa Croce sull’Arno, 56124 Pisa, Italy; (L.P.); (R.N.)
| | - Francesco Verdigi
- North West Tuscany LHA (Mycological Inspectorate), via A. Cocchi, 7/9, 56124 Pisa, Italy;
| | - Roberto Narducci
- Tuscany Mycological Groups Association, via Turi, 8 Santa Croce sull’Arno, 56124 Pisa, Italy; (L.P.); (R.N.)
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (M.G.); (A.A.)
| |
Collapse
|