1
|
Ruan Z, Jiao J, Zhao J, Liu J, Liang C, Yang X, Sun Y, Tang G, Li P. Genome sequencing and comparative genomics reveal insights into pathogenicity and evolution of Fusarium zanthoxyli, the causal agent of stem canker in prickly ash. BMC Genomics 2024; 25:502. [PMID: 38773367 PMCID: PMC11110190 DOI: 10.1186/s12864-024-10424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem canker. RESULTS In this study, we sequenced and annotated a relatively high-quality genome of F. zanthoxyli with a size of 43.39 Mb, encoding 11,316 putative genes. Pathogenicity-related factors are predicted, comprising 495 CAZymes, 217 effectors, 156 CYP450s, and 202 enzymes associated with secondary metabolism. Besides, a comparative genomics analysis revealed Fusarium and Colletotrichum diverged from a shared ancestor approximately 141.1 ~ 88.4 million years ago (MYA). Additionally, a phylogenomic investigation of 12 different phytopathogens within Fusarium indicated that F. zanthoxyli originated approximately 34.6 ~ 26.9 MYA, and events of gene expansion and contraction within them were also unveiled. Finally, utilizing conserved domain prediction, the results revealed that among the 59 unique genes, the most enriched domains were PnbA and ULP1. Among the 783 expanded genes, the most enriched domains were PKc_like kinases and those belonging to the APH_ChoK_Like family. CONCLUSION This study sheds light on the genetic basis of F. zanthoxyli's pathogenicity and evolution which provides valuable information for future research on its molecular interactions with prickly ash and the development of effective strategies to combat stem canker.
Collapse
Affiliation(s)
- Zhao Ruan
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiahui Jiao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Junchi Zhao
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chaoqiong Liang
- Shaanxi Academy of Forestry, Xi'an, Shaanxi, 710082, People's Republic of China
| | - Xia Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Sun
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghui Tang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peiqin Li
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio- Disaster, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
2
|
Huang E, Zhang Y, Sun L, Zhu Y, Tang S, Mo C, Zhao B, Lu H. swnk plays an important role in the biosynthesis of swainsonine in Metarhizium anisopliae. Biotechnol Lett 2023; 45:509-519. [PMID: 36708459 DOI: 10.1007/s10529-023-03356-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Swainsonine (SW) is the principal toxic ingredient of locoweeds, and is produced by multiple fungi. A key enzyme in the SW synthesis pathway is a hybrid swnk/nrps. To analyze the role of swnk in the SW biosynthesis pathway of Metarhizium anisopliae. RESULTS The concentration of SW and the swnk expression in M. anisopliae fermentation from 1st to 7th day were determined using LC-MS and RT-qPCR, respectively. M. anisopliae had the highest SW content and swnk expression on the 5th day of fermentation; Mutant strain (MT) were obtained by PEG-mediated homologous recombination (HR) which knocked out swnk in the wild-type (WT) strain. Complemented-type (CT) strain were obtained by transforming a modified PUC19 complementation vector containing the geneticin (G418) resistance gene and swnK. SW was not detected in the MT strain and reverted to its original level in the CT strain; A Psilent-1 plasmid with Benomyl (ben)-resistant that was used interfered with swnk of WT strain. The level of SW was markedly diminished in the RNAi strain. RNAi of swnk affects the formation of the cell wall in M. anisopliae. CONCLUSION These results indicate that swnk plays a crucial role in the SW biosynthesis of M. anisopliae.
Collapse
Affiliation(s)
- Enxia Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lu Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiru Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shiyu Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chonghui Mo
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Rai N, Gupta P, Verma A, Tiwari RK, Madhukar P, Kamble SC, Kumar A, Kumar R, Singh SK, Gautam V. Ethyl Acetate Extract of Colletotrichum gloeosporioides Promotes Cytotoxicity and Apoptosis in Human Breast Cancer Cells. ACS OMEGA 2023; 8:3768-3784. [PMID: 36743019 PMCID: PMC9893742 DOI: 10.1021/acsomega.2c05746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Fungal endophytes are known to be a paragon for producing bioactive compounds with a variety of pharmacological importance. The current study aims to elucidate the molecular alterations induced by the bioactive compounds produced by the fungal endophyte Colletotrichum gloeosporioides in the tumor microenvironment of human breast cancer cells. GC/MS analysis of the ethyl acetate (EA) extract of C. gloeosporioides revealed the presence of bioactive compounds with anticancer activity. The EA extract of C. gloeosporioides exerted potential plasmid DNA protective activity against hydroxyl radicals of Fenton's reagent. The cytotoxic activity further revealed that MDA-MB-231 cells exhibit more sensitivity toward the EA extract of C. gloeosporioides as compared to MCF-7 cells, whereas non-toxic to non-cancerous HEK293T cells. Furthermore, the anticancer activity demonstrated by the EA extract of C. gloeosporioides was studied by assessing nuclear morphometric analysis and induction of apoptosis in MDA-MB-231 and MCF-7 cells. The EA extract of C. gloeosporioides causes the alteration in cellular and nuclear morphologies, chromatin condensation, long-term colony inhibition, and inhibition of cell migration and proliferation ability of MDA-MB-231 and MCF-7 cells. The study also revealed that the EA extract of C. gloeosporioides treated cells undergoes apoptosis by increased production of reactive oxygen species and significant deficit in mitochondrial membrane potential. Our study also showed that the EA extract of C. gloeosporioides causes upregulation of pro-apoptotic (BAX, PARP, CASPASE-8, and FADD), cell cycle arrest (P21), and tumor suppressor (P53) related genes. Additionally, the downregulation of antiapoptotic genes (BCL-2 and SURVIVIN) and increased Caspase-3 activity suggest the induction of apoptosis in the EA extract of C. gloeosporioides treated MDA-MB-231 and MCF-7 cells. Overall, our findings suggest that the bioactive compounds present in the EA extract of C. gloeosporioides promotes apoptosis by altering the genes related to the extrinsic as well as the intrinsic pathway. Further in vivo study in breast cancer models is required to validate the in vitro observations.
Collapse
Affiliation(s)
- Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rajan Kumar Tiwari
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Prasoon Madhukar
- Infectious
Disease Research Laboratory, Department of Medicine, Institute of
Medical Sciences, Banaras Hindu University, Varanasi221005, India
| | - Swapnil C. Kamble
- Department
of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ajay Kumar
- Department
of Zoology, Institute of Science, Banaras
Hindu University, Varanasi, 221005, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
4
|
Yabaneri C, Sevim A. Endophytic fungi from the common walnut and their in vitro antagonistic activity against Ophiognomonia leptostyla. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Phylogenetic Comparison of Swainsonine Biosynthetic Gene Clusters among Fungi. J Fungi (Basel) 2022; 8:jof8040359. [PMID: 35448590 PMCID: PMC9030584 DOI: 10.3390/jof8040359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Swainsonine is a cytotoxic alkaloid produced by fungi. Genome sequence analyses revealed that these fungi share an orthologous gene cluster, SWN, necessary for swainsonine biosynthesis. To investigate the SWN cluster, the gene sequences and intergenic regions were assessed in organisms containing swnK, which is conserved across all fungi that produce swainsonine. The orders of fungi which contained orthologous swainsonine genes included Pleosporales, Onygenales, Hypocreales, Chaetothyriales, Xylariales, Capnodiales, Microthyriales, Caliciales, Patellariales, Eurotiales, and a species of the Leotiomycetes. SwnK and swnH2 genes were conserved across all fungi containing the SWN cluster; in contrast, swnT and swnA were found in a limited number of fungi containing the SWN cluster. The phylogenetic data suggest that in some orders that the SWN cluster was gained once from a common ancestor while in other orders it was likely gained several times from one or more common ancestors. The data also show that rearrangements and inversions of the SWN cluster happened within a genus as species diverged. Analysis of the intergenic regions revealed different combinations and inversions of open reading frames, as well as absence of genes. These results provide evidence of a complex evolutionary history of the SWN cluster in fungi.
Collapse
|