1
|
Zeitoun H, Salem RA, El-Guink NM, Tolba NS, Mohamed NM. Elucidation of the mechanisms of fluconazole resistance and repurposing treatment options against urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt. BMC Microbiol 2024; 24:383. [PMID: 39354378 PMCID: PMC11443771 DOI: 10.1186/s12866-024-03512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The incidence of fungal urinary tract infections (UTIs) has dramatically increased in the past decades, with Candida arising as the predominant etiological agent. Managing these infections poses a serious challenge to clinicians, especially with the emergence of fluconazole-resistant (FLC-R) Candida species. In this study, we aimed to determine the mechanisms of fluconazole resistance in urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt, assess the correlation between fluconazole resistance and virulence, and explore potential treatment options for UTIs caused by FLC-R Candida strains. RESULTS Fluconazole susceptibility testing of 34 urinary Candida isolates indicated that 76.5% were FLC-R, with a higher prevalence of resistance recorded in non-albicans Candida spp. (88.9%) than in Candida albicans (62.5%). The calculated Spearman's correlation coefficients implied significant positive correlations between fluconazole minimum inhibitory concentrations and both biofilm formation and phospholipase production. Real-time PCR results revealed that most FLC-R isolates (60%) significantly overexpressed at least one efflux pump gene, while 42.3% significantly upregulated the ERG11 gene. The most prevalent mutation detected upon ERG11 sequencing was G464S, which is conclusively linked to fluconazole resistance. The five repurposed agents: amikacin, colistin, dexamethasone, ketorolac, and sulfamethoxazole demonstrated variable fluconazole-sensitizing activities in vitro, with amikacin, dexamethasone, and colistin being the most effective. However, the fluconazole/colistin combination produced a notable reduction (49.1%) in bladder bioburden, a 50% decrease in the inflammatory response, and tripled the median survival span relative to the untreated murine models. CONCLUSIONS The fluconazole/colistin combination offers a promising treatment option for UTIs caused by FLC-R Candida, providing an alternative to the high-cost, tedious process of novel antifungal drug discovery in the battle against antifungal resistance.
Collapse
Affiliation(s)
- Hend Zeitoun
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Rawan A Salem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Nadia M El-Guink
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Nesrin S Tolba
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nelly M Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt.
| |
Collapse
|
2
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé-Patiño G, Aviña-Padilla K, Velasco-Pareja MC, Yasnot MF. Transcriptional Reprogramming of Candida tropicalis in Response to Isoespintanol Treatment. J Fungi (Basel) 2023; 9:1199. [PMID: 38132799 PMCID: PMC10744401 DOI: 10.3390/jof9121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Candida tropicalis, an opportunistic pathogen, ranks among the primary culprits of invasive candidiasis, a condition notorious for its resistance to conventional antifungal drugs. The urgency to combat these drug-resistant infections has spurred the quest for novel therapeutic compounds, with a particular focus on those of natural origin. In this study, we set out to evaluate the impact of isoespintanol (ISO), a monoterpene derived from Oxandra xylopioides, on the transcriptome of C. tropicalis. Leveraging transcriptomics, our research aimed to unravel the intricate transcriptional changes induced by ISO within this pathogen. Our differential gene expression analysis unveiled 186 differentially expressed genes (DEGs) in response to ISO, with a striking 85% of these genes experiencing upregulation. These findings shed light on the multifaceted nature of ISO's influence on C. tropicalis, spanning a spectrum of physiological, structural, and metabolic adaptations. The upregulated DEGs predominantly pertained to crucial processes, including ergosterol biosynthesis, protein folding, response to DNA damage, cell wall integrity, mitochondrial activity modulation, and cellular responses to organic compounds. Simultaneously, 27 genes were observed to be repressed, affecting functions such as cytoplasmic translation, DNA damage checkpoints, membrane proteins, and metabolic pathways like trans-methylation, trans-sulfuration, and trans-propylamine. These results underscore the complexity of ISO's antifungal mechanism, suggesting that it targets multiple vital pathways within C. tropicalis. Such complexity potentially reduces the likelihood of the pathogen developing rapid resistance to ISO, making it an attractive candidate for further exploration as a therapeutic agent. In conclusion, our study provides a comprehensive overview of the transcriptional responses of C. tropicalis to ISO exposure. The identified molecular targets and pathways offer promising avenues for future research and the development of innovative antifungal therapies to combat infections caused by this pathogenic yeast.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Gilmar Santafé-Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Katia Aviña-Padilla
- Center for Research and Advanced Studies of the I.P.N. Unit Irapuato, Irapuato 36821, Mexico;
| | - María Camila Velasco-Pareja
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| | - María Fernanda Yasnot
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| |
Collapse
|
3
|
de Lima Silva MG, de Lima LF, Alencar Fonseca VJ, Santos da Silva LY, Calixto Donelardy AC, de Almeida RS, de Morais Oliveira-Tintino CD, Pereira Bezerra Martins AOB, Ribeiro-Filho J, Bezerra Morais-Braga MF, Tintino SR, Alencar de Menezes IR. Enhancing the Antifungal Efficacy of Fluconazole with a Diterpene: Abietic Acid as a Promising Adjuvant to Combat Antifungal Resistance in Candida spp. Antibiotics (Basel) 2023; 12:1565. [PMID: 37998767 PMCID: PMC10668680 DOI: 10.3390/antibiotics12111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The increasing antifungal resistance rates against conventional drugs reveal the urgent need to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of fluconazole. Abietic acid was tested both individually and in combination with fluconazole against Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium. The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While the IC50 of the drugs alone ranged between 1065 and 3255 μg/mL, the IC50 resulting from the combination of abietic acid and fluconazole ranged between 7563 and 160.1 μg/mL. Whether used in combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration (MFC) values exceeding 1024 μg/mL against Candida albicans, Candida krusei and Candida tropicalis. However, it was observed that the antifungal effect of fluconazole was enhanced when used in combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness of fluconazole, thereby reducing antifungal resistance.
Collapse
Affiliation(s)
- Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Luciene Ferreira de Lima
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Victor Juno Alencar Fonseca
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ana Cecília Calixto Donelardy
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ray Silva de Almeida
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | | | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio 61773-270, Ceará, Brazil;
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| |
Collapse
|
4
|
Wang Y, Wan X, Zhao L, Jin P, Zhang J, Zhou X, Ye N, Wang X, Pan Y, Xu L. Clonal aggregation of fluconazole-resistant Candida tropicalis isolated from sterile body fluid specimens from patients in Hefei, China. Med Mycol 2023; 61:myad097. [PMID: 37777835 DOI: 10.1093/mmy/myad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
Candida tropicalis, a human conditionally pathogenic yeast, is distributed globally, especially in Asia-Pacific. The increasing morbidity and azole resistance of C. tropicalis have made clinical treatment difficult. The correlation between clonality and antifungal susceptibility of clinical C. tropicalis isolates has been reported. To study the putative correlation in C. tropicalis isolated from normally sterile body fluid specimens and explore the distinct clonal complex (CC) in Hefei, 256 clinical C. tropicalis isolates were collected from four teaching hospitals during 2016-2019, of which 30 were fluconazole-resistant (FR). Genetic profiles of 63 isolates, including 30 FR isolates and 33 fluconazole-susceptible (FS) isolates, were characterized using multilocus sequence typing (MLST). Phylogenetic analysis of the data was conducted using UPGMA (unweighted pair group method with arithmetic averages) and the minimum spanning tree algorithm. MLST clonal complexes (CCs) were analyzed using the goeBURST package. Among 35 differentiated diploid sequence types (DSTs), 16 DSTs and 1 genotype were identified as novel. A total of 35 DSTs were assigned to five major CCs based on goeBURST analysis. CC1 (containing DST376, 505, 507, 1221, 1222, 1223, 1226, and 1229) accounted for 86.7% (26/30) of the FR isolates. However, the genetic relationships among the FS isolates were relatively decentralized. The local FR CC1 belongs to a large fluconazole non-susceptible CC8 in global isolates, of which the putative founder genotype was DST225. The putative correlation between MLST types and antifungal susceptibility of clinical C. tropicalis isolates in Hefei showed that DSTs are closely related to FR clones.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Wan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Li Zhao
- Department of Urology, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Peipei Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Ju Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Naifang Ye
- Department of Clinical Laboratory Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yaping Pan
- Department of Clinical Laboratory Medicine, High Tech Branch of The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Liangfei Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
5
|
Rojas AE, Cárdenas LY, García MC, Pérez JE. Expression of ERG11, ERG3, MDR1 and CDR1 genes in Candida tropicalis. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:144-155. [PMID: 37721916 PMCID: PMC10575625 DOI: 10.7705/biomedica.6852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/09/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Drug resistance to azoles is a growing problem in the Candida genus. OBJECTIVE To analyze molecularly the genes responsible for fluconazole resistance in Candida tropicalis strains. MATERIALS AND METHODS Nineteen strains, with and without exposure to fluconazole, were selected for this study. The expression of MDR1, CDR1, ERG11, and ERG3 genes was analyzed in sensitive, dose-dependent sensitive, and resistant strains exposed to different concentrations of the antifungal drug. RESULTS MDR1, ERG11 and ERG3 genes were significantly overexpressed in the different sensitivity groups. CDR1 gene expression was not statistically significant among the studied groups. Seven of the eight fluconazole-resistant strains showed overexpression of one or more of the analyzed genes. In some dose-dependent sensitive strains, we found overexpression of CDR1, ERG11, and ERG3. CONCLUSION The frequency of overexpression of ERG11 and ERG3 genes indicates that they are related to resistance. However, the finding of dose-dependent resistant/sensitive strains without overexpression of these genes suggests that they are not exclusive to this phenomenon. More basic research is needed to study other potentially involved genes in the resistance mechanism to fluconazole.
Collapse
Affiliation(s)
- Ana Elisa Rojas
- Grupo de Investigación en Enfermedades Infecciosas - GINEI, Universidad Católica de Manizales, Manizales, Colombia..
| | - Leidy Yurany Cárdenas
- Grupo de Investigación en Enfermería - GRIEN, Universidad Católica de Manizales y Universidad de Caldas, Manizales, Colombia..
| | - María Camila García
- Grupo de Investigación en Enfermedades Infecciosas - GINEI, Universidad Católica de Manizales, Manizales, Colombia..
| | - Jorge Enrique Pérez
- Grupo de Investigación BIOSALUD, Universidad de Caldas, Manizales, Colombia..
| |
Collapse
|
6
|
Spruijtenburg B, Baqueiro CCSZ, Colombo AL, Meijer EFJ, de Almeida JN, Berrio I, Fernández NB, Chaves GM, Meis JF, de Groot T. Short Tandem Repeat Genotyping and Antifungal Susceptibility Testing of Latin American Candida tropicalis Isolates. J Fungi (Basel) 2023; 9:207. [PMID: 36836321 PMCID: PMC9958743 DOI: 10.3390/jof9020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Candida tropicalis is emerging as one of the most common Candida species causing opportunistic infections in Latin America. Outbreak events caused by C. tropicalis were reported, and antifungal resistant isolates are on the rise. In order to investigate population genomics and look into antifungal resistance, we applied a short tandem repeat (STR) genotyping scheme and antifungal susceptibility testing (AFST) to 230 clinical and environmental C. tropicalis isolates from Latin American countries. STR genotyping identified 164 genotypes, including 11 clusters comprised of three to seven isolates, indicating outbreak events. AFST identified one isolate as anidulafungin-resistant and harboring a FKS1 S659P substitution. Moreover, we identified 24 clinical and environmental isolates with intermediate susceptibility or resistance to one or more azoles. ERG11 sequencing revealed each of these isolates harboring a Y132F and/or Y257H/N substitution. All of these isolates, except one, were clustered together in two groups of closely related STR genotypes, with each group harboring distinct ERG11 substitutions. The ancestral C. tropicalis strain of these isolates likely acquired the azole resistance-associated substitutions and subsequently spread across vast distances within Brazil. Altogether, this STR genotyping scheme for C. tropicalis proved to be useful for identifying unrecognized outbreak events and better understanding population genomics, including the spread of antifungal-resistant isolates.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Cynthea C. S. Z. Baqueiro
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - Arnaldo L. Colombo
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - Eelco F. J. Meijer
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - João N. de Almeida
- Disciplina de Infectologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Indira Berrio
- Hospital General de Medellín Luz Castro de Gutiérrez ESE, Medellín 050015, Colombia
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Medellín 050015, Colombia
| | - Norma B. Fernández
- Hospital de Clínicas, Universidad de Buenos Aires, Buenos Aires 2351, Argentina
| | - Guilherme M. Chaves
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, 50931 Cologne, Germany
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology, Radboud University Medical Center, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | | |
Collapse
|
7
|
Yu J, He C, Wang T, Zhang G, Li J, Zhang J, Kang W, Xu Y, Zhao Y. Rapid automated antifungal susceptibility testing system for yeasts based on growth characteristics. Front Cell Infect Microbiol 2023; 13:1153544. [PMID: 37201120 PMCID: PMC10185846 DOI: 10.3389/fcimb.2023.1153544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Fungal pathogens are a major threat to public health, as they are becoming increasingly common and resistant to treatment, with only four classes of antifungal medicines currently available and few candidates in the clinical development pipeline. Most fungal pathogens lack rapid and sensitive diagnostic techniques, and those that exist are not widely available or affordable. In this study, we introduce a novel automated antifungal susceptibility testing system, Droplet 48, which detects the fluorescence of microdilution wells in real time and fits growth characteristics using fluorescence intensity over time. We concluded that all reportable ranges of Droplet 48 were appropriate for clinical fungal isolates in China. Reproducibility within ±2 two-fold dilutions was 100%. Considering the Sensititre YeastOne Colorimetric Broth method as a comparator method, eight antifungal agents (fluconazole, itraconazole, voriconazole, caspofungin, micafungin, anidulafungin, amphotericin B, and 5-flucytosine) showed an essential agreement of >90%, except for posaconazole (86.62%). Category agreement of four antifungal agents (fluconazole, caspofungin, micafungin, and anidulafungin) was >90%, except for voriconazole (87.93% agreement). Two Candida albicans isolates and anidulafungin showed a major discrepancy (MD) (2.60%), and no other MD or very MD agents were found. Therefore, Droplet 48 can be considered as an optional method that is more automated and can obtain results and interpretations faster than previous methods. However, the optimization of the detection performance of posaconazole and voriconazole and promotion of Droplet 48 in clinical microbiology laboratories still require further research involving more clinical isolates in the future.
Collapse
Affiliation(s)
- Jinhan Yu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chun He
- Department of Clinical Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tong Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Ge Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Jin Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Jingjia Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Wei Kang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- *Correspondence: Ying Zhao, ; Yingchun Xu,
| | - Ying Zhao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
- *Correspondence: Ying Zhao, ; Yingchun Xu,
| |
Collapse
|
8
|
Krężel P, Olejniczak T, Tołoczko A, Gach J, Weselski M, Bronisz R. Synergic Effect of Phthalide Lactones and Fluconazole and Its New Analogues as a Factor Limiting the Use of Azole Drugs against Candidiasis. Antibiotics (Basel) 2022; 11:1500. [PMID: 36358155 PMCID: PMC9686652 DOI: 10.3390/antibiotics11111500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
The resistance of Candida albicans and other pathogenic yeasts to azole antifungal drugs has increased rapidly in recent years and is a significant problem in clinical therapy. The current state of pharmacological knowledge precludes the withdrawal of azole drugs, as no other active substances have yet been developed that could effectively replace them. Therefore, one of the anti-yeast strategies may be therapies that can rely on the synergistic action of natural compounds and azoles, limiting the use of azole drugs against candidiasis. Synergy assays performed in vitro were used to assess drug interactions Fractional Inhibitory Concentration Index. The synergistic effect of fluconazole (1) and three synthetic lactones identical to those naturally occurring in celery plants-3-n-butylphthalide (2), 3-n-butylidenephthalide (3), 3-n-butyl-4,5,6,7-tetrahydrophthalide (4)-against Candida albicans ATCC 10231, C. albicans ATCC 2091, and C. guilliermondii KKP 3390 was compared with the performance of the individual compounds separately. MIC90 (the amount of fungistatic substance (in µg/mL) inhibiting yeast growth by 90%) was determined as 5.96-6.25 µg/mL for fluconazole (1) and 92-150 µg/mL for lactones 2-4. With the simultaneous administration of fluconazole (1) and one of the lactones 2-4, it was found that they act synergistically, and to achieve the same effect it is sufficient to use 0.58-6.73 µg/mL fluconazole (1) and 1.26-20.18 µg/mL of lactones 2-4. As fluconazole and phthalide lactones show synergy, 11 new fluconazole analogues with lower toxicity and lower inhibitory activity for CYP2C19, CYP1A2, and CYP2C9, were designed after in silico testing. The lipophilicity was also analyzed. A three-carbon alcohol with two rings was preserved. In all compounds 5-15, the 1,2,4-triazole rings were replaced with 1,2,3-triazole or tetrazole rings. The hydroxyl group was free or esterified with phenylacetic acid or thiophene-2-carboxylic acid chlorides or with adipic acid. In structures 11 and 12 the hydroxyl group was replaced with the fragment -CH2Cl or = CH2. Additionally, the difluorophenyl ring was replaced with unsubstituted phenyl. The structures of the obtained compounds were determined by 1H NMR, and 13C NMR spectroscopy. Molecular masses were established by GC-MS or elemental analysis. The MIC50 and MIC90 of all compounds 1-15 were determined against Candida albicans ATCC 10231, C. albicans ATCC 2091, AM 38/20, C. guilliermondii KKP 3390, and C. zeylanoides KKP 3528. The MIC50 values for the newly prepared compounds ranged from 38.45 to 260.81 µg/mL. The 90% inhibitory dose was at least twice as high. Large differences in the effect of fluconazole analogues 5-15 on individual strains were observed. A synergistic effect on three strains-Candida albicans ATCC 10231, C. albicans ATCC 2091, C. guilliermondii KKP 339-was observed. Fractional inhibitory concentrations FIC50 and FIC90 were tested for the most active lactone, 3-n-butylphthalide, and seven fluconazole analogues. The strongest synergistic effect was observed for the strain C. albicans ATCC 10231, FIC 0.04-0.48. The growth inhibitory amount of azole is from 25 to 55 µg/mL and from 3.13 to 25.3 µg/mL for 3-n-butylphthalide. Based on biological research, the influence of the structure on the fungistatic activity and the synergistic effect were determined.
Collapse
Affiliation(s)
- Piotr Krężel
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Gach
- Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Antifungal potential of isoespintanol extracted from Oxandra xylopioides diels (Annonaceae) against intrahospital isolations of Candida SPP. Heliyon 2022; 8:e11110. [PMID: 36303897 PMCID: PMC9593293 DOI: 10.1016/j.heliyon.2022.e11110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/24/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to evaluate the antifungal activity of isoespintanol (ISO) extracted from Oxandra xylopioides Diels (Annonaceae) against clinical isolates of Candida spp. Isoespintanol was obtained from the petroleum benzine extract of the leaves and was identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS). For antifungal activity experiments, the broth microdilution method was used. The results show an inhibitory effect against Candida spp., with minimum inhibitory concentration (MIC) values between 450.4-503.3 μg/mL. Furthermore, the inhibitory effect of ISO against fungal biofilms is highlighted, even in some cases, greater than the effect shown by amphotericin B (AFB) and in others, where AFB showed no effect. Assays with fluorescent staining with acridine orange (AO) and ethidium bromide (EB), transmission electron microscopy (TEM), Evans blue, measurement of extracellular pH and leakage of intracellular material, evidenced damage at the level of fungal membranes and general cell damage, when cells were exposed to ISO, compared to untreated cells. The results of this research, serve as the basis for future studies in the establishment of the mechanisms of antifungal action of ISO, which could serve as an adjunct in the treatment of infections by these yeasts.
Collapse
|
10
|
Contreras Martínez OI, Angulo Ortíz A, Santafé Patiño G. Mechanism of Antifungal Action of Monoterpene Isoespintanol against Clinical Isolates of Candida tropicalis. Molecules 2022; 27:5808. [PMID: 36144544 PMCID: PMC9505055 DOI: 10.3390/molecules27185808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The growing increase in infections by Candida spp., non-albicans, coupled with expressed drug resistance and high mortality, especially in immunocompromised patients, have made candidemia a great challenge. The efficacy of compounds of plant origin with antifungal potential has recently been reported as an alternative to be used. Our objective was to evaluate the mechanism of the antifungal action of isoespintanol (ISO) against clinical isolates of Candida tropicalis. Microdilution assays revealed fungal growth inhibition, showing minimum inhibitory concentration (MIC) values between 326.6 and 500 µg/mL. The eradication of mature biofilms by ISO was between 20.3 and 25.8% after 1 h of exposure, being in all cases higher than the effect caused by amphotericin B (AFB), with values between 7.2 and 12.4%. Flow cytometry showed changes in the permeability of the plasma membrane, causing loss of intracellular material and osmotic balance; transmission electron microscopy (TEM) confirmed the damage to the integrity of the plasma membrane. Furthermore, ISO induced the production of intracellular reactive oxygen species (iROS). This indicates that the antifungal action of ISO is associated with damage to membrane integrity and the induction of iROS production, causing cell death.
Collapse
Affiliation(s)
| | - Alberto Angulo Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| |
Collapse
|
11
|
Paul S, Shaw D, Joshi H, Singh S, Chakrabarti A, Rudramurthy SM, Ghosh AK. Mechanisms of azole antifungal resistance in clinical isolates of Candida tropicalis. PLoS One 2022; 17:e0269721. [PMID: 35819969 PMCID: PMC9275685 DOI: 10.1371/journal.pone.0269721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
This study was designed to understand the molecular mechanisms of azole resistance in Candida tropicalis using genetic and bioinformatics approaches. Thirty-two azole-resistant and 10 azole-susceptible (S) clinical isolates of C. tropicalis were subjected to mutation analysis of the azole target genes including ERG11. Inducible expression analysis of 17 other genes potentially associated with azole resistance was also evaluated. Homology modeling and molecular docking analysis were performed to study the effect of amino acid alterations in mediating azole resistance. Of the 32 resistant isolates, 12 (37.5%) showed A395T and C461T mutations in the ERG11 gene. The mean overexpression of CDR1, CDR3, TAC1, ERG1, ERG2, ERG3, ERG11, UPC2, and MKC1 in resistant isolates without mutation (R-WTM) was significantly higher (p<0.05) than those with mutation (R-WM) and the sensitive isolates (3.2-11 vs. 0.2-2.5 and 0.3-2.2 folds, respectively). Although the R-WTM and R-WM had higher (p<0.05) CDR2 and MRR1 expression compared to S isolates, noticeable variation was not seen among the other genes. Protein homology modelling and molecular docking revealed that the mutations in the ERG11 gene were responsible for structural alteration and low binding efficiency between ERG11p and ligands. Isolates with ERG11 mutations also presented A220C in ERG1 and together T503C, G751A mutations in UPC2. Nonsynonymous mutations in the ERG11 gene and coordinated overexpression of various genes including different transporters, ergosterol biosynthesis pathway, transcription factors, and stress-responsive genes are associated with azole resistance in clinical isolates of C. tropicalis.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dipika Shaw
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Himanshu Joshi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anup K. Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
12
|
Pellaton N, Sanglard D, Lamoth F, Coste AT. How Yeast Antifungal Resistance Gene Analysis Is Essential to Validate Antifungal Susceptibility Testing Systems. Front Cell Infect Microbiol 2022; 12:859439. [PMID: 35601096 PMCID: PMC9114767 DOI: 10.3389/fcimb.2022.859439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe antifungal susceptibility testing (AFST) of yeast pathogen alerts clinicians about the potential emergence of resistance. In this study, we compared two commercial microdilution AFST methods: Sensititre YeastOne read visually (YO) and MICRONAUT-AM read visually (MN) or spectrophotometrically (MNV), interpreted with Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing criteria, respectively.MethodsOverall, 97 strains from 19 yeast species were measured for nine antifungal drugs including a total of 873 observations. First, the minimal inhibitory concentration (MIC) was compared between YO and MNV, and between MNV and MN, either directly or by assigning them to five susceptibility categories. Those categories were based on the number of MIC dilutions around the breakpoint or epidemiological cut-off reference values (ECOFFs or ECVs). Second, YO and MNV methods were evaluated for their ability to detect the elevation of MICs due to mutation in antifungal resistance genes, thanks to pairs or triplets of isogenic strains isolated from a single patient along a treatment previously analyzed for antifungal resistance gene mutations. Reproducibility measurement was evaluated, thanks to three quality control (QC) strains.ResultsYO and MNV direct MIC comparisons obtained a global agreement of 67%. Performing susceptibility category comparisons, only 22% and 49% of the MICs could be assigned to categories using breakpoints and ECOFFs/ECVs, respectively, and 40% could not be assigned due to the lack of criteria in both consortia. The YO and MN susceptibility categories gave accuracies as low as 50%, revealing the difficulty to implement this method of comparison. In contrast, using the antifungal resistance gene sequences as a gold standard, we demonstrated that both methods (YO and MN) were equally able to detect the acquisition of resistance in the Candida strains, even if MN showed a global lower MIC elevation than YO. Finally, no major differences in reproducibility were observed between the three AFST methods.ConclusionThis study demonstrates the valuable use of both commercial microdilution AFST methods to detect antifungal resistance due to point mutations in antifungal resistance genes. We highlighted the difficulty to conduct conclusive analyses without antifungal gene sequence data as a gold standard. Indeed, MIC comparisons taking into account the consortia criteria of interpretation remain difficult even after the effort of harmonization.
Collapse
Affiliation(s)
- Nicolas Pellaton
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Frederic Lamoth
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- *Correspondence: Alix T. Coste,
| |
Collapse
|
13
|
Daniela SV, Gabriela OM, Andrea PM. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr Med Chem 2022; 29:4251-4281. [PMID: 35139777 DOI: 10.2174/0929867329666220209103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades, regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research about the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research of prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.
Collapse
Affiliation(s)
- Santi V Daniela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Ortega María Gabriela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Peralta Mariana Andrea
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| |
Collapse
|
14
|
Wang DQ, Zhao CL. Morphological and Phylogenetic Evidence for Recognition of Two New Species of Phanerochaete from East Asia. J Fungi (Basel) 2021; 7:1063. [PMID: 34947045 PMCID: PMC8706112 DOI: 10.3390/jof7121063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/20/2023] Open
Abstract
Two new corticioid fungal species, Phanerochaete pruinosa and P. rhizomorpha spp. nov. are proposed based on a combination of morphological features and molecular evidence. Phanerochaete pruinosa is characterized by the resupinate basidiomata with the pruinose hymenial surface, a monomitic hyphal system with simple-septate generative hyphae and subcylindrical basidiospores measuring as 3.5-6.7 × 1.5-2.7 µm. Phanerochaete rhizomorpha is characterized by having a smooth hymenophore covered by orange hymenial surface, the presence of rhizomorphs, subulate cystidia, and narrower ellipsoid to ellipsoid basidiospores. Sequences of ITS+nLSU nrRNA gene regions of the studied specimens were generated and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. These phylogenetic analyses showed that two new species clustered into genus Phanerochaete, in which P. pruinosa was sister to P. yunnanensis with high supports (100% BS, 100% BT, 1.00 BPP); morphologically differing by a pale orange to greyish orange and densely cracked hymenial surface. Another species P. rhizomorpha was closely grouped with P. citrinosanguinea with lower supports; morphologically having yellow to reddish yellow hymenial surface, and smaller cystidia measuring as 31-48 × 2.3-4.8 µm.
Collapse
Affiliation(s)
- Dong-Qiong Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China;
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China;
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Chen PY, Chuang YC, Wu UI, Sun HY, Wang JT, Sheng WH, Chen YC, Chang SC. Correction: Chen et al. Mechanisms of Azole Resistance and Trailing in Candida tropicalis Bloodstream Isolates. J. Fungi 2021, 7, 612. J Fungi (Basel) 2021; 7:jof7110932. [PMID: 34829285 PMCID: PMC8624794 DOI: 10.3390/jof7110932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Because the geometric means of fluconazole and voriconazole in some isolates were not correctly input into the low trailing or high trailing WT group during the visualization process when using GraphPad Prism [...].
Collapse
Affiliation(s)
- Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
| | - Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
- Department of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
- Department of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- National Health Research Institutes, Miaoli 350, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 65054); Fax: +886-2-23971412
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (P.-Y.C.); (Y.-C.C.); (U.-I.W.); (H.-Y.S.); (J.-T.W.); (W.-H.S.); (S.-C.C.)
- Department of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
16
|
Hamada Y, Ebihara F, Kikuchi K. A Strategy for Hospital Pharmacists to Control Antimicrobial Resistance (AMR) in Japan. Antibiotics (Basel) 2021; 10:1284. [PMID: 34827222 PMCID: PMC8614892 DOI: 10.3390/antibiotics10111284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
In Japan, there is concern regarding the relation between the inappropriate use of antibiotics and antibiotic resistance (AMR). Increased bacterial resistance is due in part to the inappropriate use of antimicrobial agents. The support of the pharmacist becomes important, and there is growing interest in antimicrobial stewardship to promote the appropriate and safe use of antimicrobials needed for the optimal selection of drugs, doses, durations of therapy, therapeutic drug monitoring (TDM), and implementations of cost containment strategies in Japan. Pharmacists should strive to disseminate the concept of "choosing wisely" in relation to all medicines, implement further interventions, and put them into practice. In this article, we present data for antimicrobial stewardship and Japan's AMR action plan, focusing on how pharmacists should be involved in enabling physicians to choose antimicrobials wisely.
Collapse
Affiliation(s)
- Yukihiro Hamada
- Department of Pharmacy, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan;
| | - Fumiya Ebihara
- Department of Pharmacy, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan;
| | - Ken Kikuchi
- Department of Infectious Disease, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan;
| |
Collapse
|