1
|
Tópor Nunes AA, Veras FF, Cacciatore FA, Silveira RD, Malheiros PDS, Welke JE. Nanoencapsulation with Eudragit® and chia mucilage increases the stability and antifungal efficacy of carvacrol against Aspergillus spp. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024:1-17. [PMID: 39556117 DOI: 10.1080/19440049.2024.2427670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Carvacrol is a consolidated natural antimicrobial. However, its use in food is a challenge due to characteristic odour and high volatility. Nanoencapsulation has emerged to overcome these drawbacks. Aspergillus spp. represent a concern in grapes for causing rot and producing mycotoxins. This study aimed to evaluate the effect of carvacrol (unencapsulated and loaded into Eudragit® and chia nanocapsules) on the growth of Aspergillus species. Spore germination and mycelial growth of Aspergillus spp. were evaluated using the agar dilution culture method. The stability of nanocapsules during storage was monitored monthly by evaluating the particle size distribution, polydispersity index, and zeta potential. Antifungal and antitoxigenic effectiveness of nanocapsules were assessed by counting fungal colony-forming units and determining mycotoxin levels in grapes. A dose-dependent effect of carvacrol (unencapsulated and encapsulated forms) on spore germination and mycelial growth was observed. During 180 days of storage, carvacrol into Eudragit® nanocapsules preserved their nanometric dimensions, whereas chia nanocapsules maintained this characteristic for 30 days. The antifungal effectiveness of both encapsulated forms persisted for 210 days. No mycotoxin was found, even when fungal growth was not completely suppressed. Nanoencapsulated carvacrol proved to be a new promising antifungal product to ensure quality and safety in the grape production chain.
Collapse
Affiliation(s)
- Athos Aramis Tópor Nunes
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flávio Fonseca Veras
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fabiola Ayres Cacciatore
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafaela Diogo Silveira
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Patrícia da Silva Malheiros
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
2
|
Chu Y, Yu A, Wang H, Rajput SA, Yu Q, Qi D. Biological Mechanisms of Aflatoxin B 1-Induced Bile Metabolism Abnormalities in Ducklings. Animals (Basel) 2024; 14:2996. [PMID: 39457926 PMCID: PMC11506432 DOI: 10.3390/ani14202996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the effects and biological mechanisms of aflatoxin B1 (AFB1) on the health and bile metabolism of ducklings. Forty-eight 1-day-old ducklings were randomly assigned to two groups, with six replicates per group. The control group was fed a basic diet, while the AFB1 group received a diet containing 90 µg/kg of AFB1. The experiment lasted for 2 weeks. The results showed that 90 µg/kg AFB1 caused abnormal bile metabolism; damaged liver cell nuclei and mitochondria; and significantly decreased body weight, average daily weight gain, and levels of albumin, total protein, cholesterol, total superoxide dismutase, glutathione peroxidase, and glutathione. It also significantly increased feed conversion efficiency, along with alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bile acids, and malondialdehyde levels. In the liver, the expression levels of CYP7A1, SCD, and other genes were significantly upregulated, while BSEP, FASN, HMGCR, CAT, and other genes were significantly downregulated. In conclusion, AFB1 causes abnormal bile metabolism and impairs the overall health and liver function of ducklings. Its mechanism of action may involve changes in gene expression related to bile acid metabolism, lipid metabolism, oxidative damage, and cancer pathways.
Collapse
Affiliation(s)
- Yihong Chu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Aimei Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Qianqian Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| |
Collapse
|
3
|
Yang G, Li B, Chen K, Du M, Zalán Z, Hegyi F, Kan J. Isolation and evaluation of probiotics from traditional Chinese foods for aflatoxin B 1 detoxification: Geotrichum candidum XG1 (yeast) and mechanistic insights. Food Chem 2024; 452:139541. [PMID: 38718457 DOI: 10.1016/j.foodchem.2024.139541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Identifying aflatoxin-detoxifying probiotics remains a significant challenge in mitigating the risks associated with aflatoxin contamination in crops. Biological detoxification is a popular technique that reduces mycotoxin hazards and garners consumer acceptance. Through multiple rounds of screening and validation tests, Geotrichum candidum XG1 demonstrated the ability to degrade aflatoxin B1 (AFB1) by 99-100%, exceeding the capabilities of mere adsorption mechanisms. Notably, the degradation efficiency was demonstrably influenced by the presence of copper and iron ions in the liquid medium, suggesting a potential role for proteases in the degradation process. Subsequent validation experiments with red pepper revealed an 83% reduction in AFB1 levels following fermentation with G. candidum XG1. Furthermore, mass spectrometry analysis confirmed the disruption of the AFB1 furan ring structure, leading to a subsequent reduction in its toxicity. Collectively, these findings establish G. candidum XG1 as a promising candidate for effective aflatoxin degradation, with potential applications within the food industry.
Collapse
Affiliation(s)
- Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Bin Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China
| | - Zsolt Zalán
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Ferenc Hegyi
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Herman Ottó str. 15, Budapest 1022, Hungary.
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Wang X, Sahibzada KI, Du R, Lei Y, Wei S, Li N, Hu Y, Lv Y. Rhein Inhibits Cell Development and Aflatoxin Biosynthesis via Energy Supply Disruption and ROS Accumulation in Aspergillus flavus. Toxins (Basel) 2024; 16:285. [PMID: 39057925 PMCID: PMC11280830 DOI: 10.3390/toxins16070285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 μM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 μM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 μM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Kashif Iqbal Sahibzada
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
- Department of Health Professional Technologies, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54570, Pakistan
| | - Ruibo Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yang Lei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Na Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| |
Collapse
|
5
|
Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S. Impact of Lysine Succinylation on the Biology of Fungi. Curr Issues Mol Biol 2024; 46:1020-1046. [PMID: 38392183 PMCID: PMC10888112 DOI: 10.3390/cimb46020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.
Collapse
Affiliation(s)
- John Adejor
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoqi Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Yang C, Wu D, Lin H, Ma D, Fu W, Yao Y, Pan X, Wang S, Zhuang Z. Role of RNA Modifications, Especially m6A, in Aflatoxin Biosynthesis of Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:726-741. [PMID: 38112282 DOI: 10.1021/acs.jafc.3c05926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
RNA modifications play key roles in eukaryotes, but the functions in Aspergillus flavus are still unknown. Temperature has been reported previously to be a critical environmental factor that regulates the aflatoxin production of A. flavus, but much remains to be learned about the molecular networks. Here, we demonstrated that 12 kinds of RNA modifications in A. flavus were significantly changed under 29 °C compared to 37 °C incubation; among them, m6A was further verified by a colorimetric method. Then, the transcriptome-wide m6A methylome and m6A-altered genes were comprehensively illuminated through methylated RNA immunoprecipitation sequencing and RNA sequencing, from which 22 differentially methylated and expressed transcripts under 29 °C were screened out. It is especially notable that AFCA_009549, an aflatoxin biosynthetic pathway gene (aflQ), and the m6A methylation of its 332nd adenine in the mRNA significantly affect aflatoxin biosynthesis in A. flavus both on media and crop kernels. The content of sterigmatocystin in both ΔaflQ and aflQA332C strains was significantly higher than that in the WT strain. Together, these findings reveal that RNA modifications are associated with secondary metabolite biosynthesis of A. flavus.
Collapse
Affiliation(s)
- Chi Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Edible Mushroom, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Dandan Wu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wangzhuo Fu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfang Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohua Pan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Davati N, Ghorbani A. Discovery of long non-coding RNAs in Aspergillus flavus response to water activity, CO 2 concentration, and temperature changes. Sci Rep 2023; 13:10330. [PMID: 37365206 DOI: 10.1038/s41598-023-37236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Although the role of long non-coding RNAs (lncRNAs) in key biological processes in animals and plants has been confirmed for decades, their identification in fungi remains limited. In this study, we discovered and characterized lncRNAs in Aspergillus flavus in response to changes in water activity, CO2 concentration, and temperature, and predicted their regulatory roles in cellular functions. A total of 472 lncRNAs were identified in the genome of A. flavus, consisting of 470 novel lncRNAs and 2 putative lncRNAs (EFT00053849670 and EFT00053849665). Our analysis of lncRNA expression revealed significant differential expression under stress conditions in A. flavus. Our findings indicate that lncRNAs in A. flavus, particularly down-regulated lncRNAs, may play pivotal regulatory roles in aflatoxin biosynthesis, respiratory activities, cellular survival, and metabolic maintenance under stress conditions. Additionally, we predicted that sense lncRNAs down-regulated by a temperature of 30 °C, osmotic stress, and CO2 concentration might indirectly regulate proline metabolism. Furthermore, subcellular localization analysis revealed that up-and down-regulated lncRNAs are frequently localized in the nucleus under stress conditions, particularly at a water activity of 0.91, while most up-regulated lncRNAs may be located in the cytoplasm under high CO2 concentration.
Collapse
Affiliation(s)
- Nafiseh Davati
- Department of Food Science and Technology, College of Food Industry, Bu-Ali Sina University, Hamedan, 65167-38695, Iran.
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| |
Collapse
|
8
|
Yuan S, Wu Y, Jin J, Tong S, Zhang L, Cai Y. Biocontrol Capabilities of Bacillus subtilis E11 against Aspergillus flavus In Vitro and for Dried Red Chili ( Capsicum annuum L.). Toxins (Basel) 2023; 15:toxins15050308. [PMID: 37235343 DOI: 10.3390/toxins15050308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
As a condiment with extensive nutritional value, chili is easy to be contaminated by Aspergillus flavus (A. flavus) during field, transportation, and storage. This study aimed to solve the contamination of dried red chili caused by A. flavus by inhibiting the growth of A. flavus and detoxifying aflatoxin B1 (AFB1). In this study, Bacillus subtilis E11 (B. subtilis) screened from 63 candidate antagonistic bacteria exhibited the strongest antifungal ability, which could not only inhibit 64.27% of A. flavus but could also remove 81.34% of AFB1 at 24 h. Notably, scanning electron microscopy (SEM) showed that B. subtilis E11 cells could resist a higher concentration of AFB1, and the fermentation supernatant of B. subtilis E11 could deform the mycelia of A. flavus. After 10 days of coculture with B. subtilis E11 on dried red chili inoculated with A. flavus, the mycelia of A. flavus were almost completely inhibited, and the yield of AFB1 was significantly reduced. Our study first concentrated on the use of B. subtilis as a biocontrol agent for dried red chili, which could not only enrich the resources of microbial strains for controlling A. flavus but also could provide theoretical guidance to prolong the shelf life of dried red chili.
Collapse
Affiliation(s)
- Shenglan Yuan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yafei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Proteomics as a New-Generation Tool for Studying Moulds Related to Food Safety and Quality. Int J Mol Sci 2023; 24:ijms24054709. [PMID: 36902140 PMCID: PMC10003330 DOI: 10.3390/ijms24054709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mould development in foodstuffs is linked to both spoilage and the production of mycotoxins, provoking food quality and food safety concerns, respectively. The high-throughput technology proteomics applied to foodborne moulds is of great interest to address such issues. This review presents proteomics approaches useful for boosting strategies to minimise the mould spoilage and the hazard related to mycotoxins in food. Metaproteomics seems to be the most effective method for mould identification despite the current problems related to the bioinformatics tool. More interestingly, different high resolution mass spectrometry tools are suitable for evaluating the proteome of foodborne moulds able to unveil the mould's response under certain environmental conditions and the presence of biocontrol agents or antifungals, being sometimes combined with a method with limited ability to separate proteins, the two-dimensional gel electrophoresis. However, the matrix complexity, the high ranges of protein concentrations needed and the performing of multiple steps are some of the proteomics limitations for the application to foodborne moulds. To overcome some of these limitations, model systems have been developed and proteomics applied to other scientific fields, such as library-free data independent acquisition analyses, the implementation of ion mobility, and the evaluation of post-translational modifications, are expected to be gradually implemented in this field for avoiding undesirable moulds in foodstuffs.
Collapse
|
10
|
Chang PK. A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger. Microbiol Spectr 2023; 11:e0464822. [PMID: 36651760 PMCID: PMC9927283 DOI: 10.1128/spectrum.04648-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
11
|
Wen M, Lan H, Sun R, Chen X, Zhang X, Zhu Z, Tan C, Yuan J, Wang S. Histone deacetylase SirE regulates development, DNA damage response and aflatoxin production in Aspergillus flavus. Environ Microbiol 2022; 24:5596-5610. [PMID: 36059183 DOI: 10.1111/1462-2920.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
Aspergillus flavus is a ubiquitous saprotrophic soil-borne pathogenic fungus that causes crops contamination with the carcinogen aflatoxins. Although Sirtuin E (SirE) is known to be a NAD-dependent histone deacetylase involved in global transcriptional regulation. Its biological functions in A. flavus are not fully understood. To explore the effects of SirE, we found that SirE was located in the nucleus and increased the level of H3K56 acetylation. The ΔsirE mutant had the most severe growth defect in the sirtuin family. The RNA-Seq revealed that sirE was crucial for secondary metabolism production as well as genetic information process and oxidation-reduction in A. flavus. Further analysis revealed that the ΔsirE mutant increased aflatoxin production. Both the sirE deletion and H3K56 mutants were highly sensitive to DNA damage and oxidative stresses, indicating that SirE was required for DNA damage and redox reaction by the H3K56 locus. Furthermore, the ΔsirE mutant displayed high sensitivity to osmotic stress and cell wall stress, but they may not be associated with the H3K56. Finally, the catalytic activity site N192 of SirE was required for regulating growth, deacetylase function and aflatoxin production. Together, SirE is essential for histone deacetylation and biological function in A. flavus.
Collapse
Affiliation(s)
- Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuo Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Tan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|