1
|
Lynn KMT, Wingfield MJ, Hammerbacher A, Barnes I. High-resolution melting curve analysis: A detection assay for Ceratocystis eucalypticola and C. manginecans in infected Eucalyptus. Fungal Biol 2024; 128:2062-2072. [PMID: 39174241 DOI: 10.1016/j.funbio.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Eucalyptus spp. in plantations are negatively affected by canker and wilt diseases caused by several species of Ceratocystis, particularly those in the Latin American Clade (LAC). Ceratocystis eucalypticola and Ceratocystis manginecans are of particular concern where disease epidemics are reported globally, with recent outbreaks emerging in South African and Indonesian Eucalyptus plantations. Consequently, a rapid screening protocol is required for these pathogens. In this study, a high-resolution melting curve analysis (HRMA) was developed to detect C. eucalypticola and C. manginecans that bypasses time-consuming isolation and post-PCR procedures. Primers targeting a 172 bp region of the cerato-platanin (CP) gene were designed. Using these primers, the accuracy of HRMA to detect and distinguish between these two LAC species was assessed using pure fungal DNA, and DNA extracted directly from Eucalyptus samples naturally infected with C. eucalypticola. The assay accurately detected the presence of C. eucalypticola and C. manginecans and quantifies their DNA, both from cultures, and directly from wood samples. HRMA further differentiated these two species from all other tested LAC individuals. This assay was also able to detect the presence of all the tested LAC species and distinguish seven of these, including C. fimbriata, to species level. Ceratocystis polyconidia was the only non-LAC off-target species detected. Based on these results, the developed assay can be used to rapidly identify C. eucalypticola and C. manginecans directly from infected plant material or fungal cultures, with the potential to also screen for several other LAC species.
Collapse
Affiliation(s)
- Kira M T Lynn
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa.
| |
Collapse
|
2
|
Aylward J, Wilson AM, Visagie CM, Spraker J, Barnes I, Buitendag C, Ceriani C, Del Mar Angel L, du Plessis D, Fuchs T, Gasser K, Krämer D, Li W, Munsamy K, Piso A, Price JL, Sonnekus B, Thomas C, van der Nest A, van Dijk A, van Heerden A, van Vuuren N, Yilmaz N, Duong TA, van der Merwe NA, Wingfield MJ, Wingfield BD. IMA Genome - F19 : A genome assembly and annotation guide to empower mycologists, including annotated draft genome sequences of Ceratocystis pirilliformis, Diaporthe australafricana, Fusarium ophioides, Paecilomyces lecythidis, and Sporothrix stenoceras. IMA Fungus 2024; 15:12. [PMID: 38831329 PMCID: PMC11149380 DOI: 10.1186/s43008-024-00142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pace at which Next Generation Sequence data is being produced continues to accelerate as technology improves. As a result, such data are increasingly becoming accessible to biologists outside of the field of bioinformatics. In contrast, access to training in the methods of genome assembly and annotation are not growing at a similar rate. In this issue, we report on a Genome Assembly Workshop for Mycologists that was held at the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa and make available the 12 draft genome sequences emanating from the event. With the aim of making the process of genome assembly and annotation more accessible to biologists, we provide a step-by-step guide to both genome assembly and annotation, intended to encourage and empower mycologists to use genome data in their research.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Joseph Spraker
- Hexagon Bio, 1490 O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Carla Buitendag
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Callin Ceriani
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Lina Del Mar Angel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Deanné du Plessis
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Taygen Fuchs
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Katharina Gasser
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Institute of Plant Protection, Konrad Lorenz-Strasse 24, Tulln an Der Donau, 3430, Vienna, Austria
| | - Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - WenWen Li
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Kiara Munsamy
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Jenna-Lee Price
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Byron Sonnekus
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Chanel Thomas
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alida van Dijk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicole van Vuuren
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
3
|
Indrayadi H, Glen M, Alhusaeri Siregar B, Ratkowsky D, Rimbawanto A, Tjahjono B, Mohammed C. Cross-Inoculation of Commercial Forestry, Amenity, and Horticulture Tree Species with Ceratocystis Isolates Collected from Different Host Species. PLANT DISEASE 2024; 108:1491-1500. [PMID: 38780477 DOI: 10.1094/pdis-02-23-0271-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ceratocystis manginecans has caused significant losses in forestry productivity in Indonesia and neighboring nations. It also infects horticultural trees, but the host range of individual isolates of C. manginecans is poorly studied. So, this study aimed to better understand the potential host range and evaluate aggressiveness against forestry and fruit tree species of C. manginecans isolated from various tree species in Indonesia. Five C. manginecans isolates, four from different tree species and one from the shot-hole borer Euwallacea perbrevis, were used to inoculate seven fruit and six forest tree species, including E. pellita and Acacia mangium. Many of the inoculated trees produced typical canker disease symptoms, such as rough, swollen, and cracked lesions on the bark, but some trees did not have any external symptoms. Mortality in the most susceptible clone of A. mangium was 40% within 8 weeks. Forest tree species were more susceptible than fruit trees, with the length of xylem discoloration ranging from 0.4 to 101 cm. In fruit trees, the average extent of xylem discoloration was lower, ranging from 0.4 to 20.5 cm; however, mortalities were recorded in two fruit tree species, Citrus microcarpa and Durio zibethinus. Host-isolate interaction was evident; isolate Ep106C from Eucalyptus pellita caused the greatest xylem discoloration in Citrus sp., whereas Hy163C from Hymenaea courbaril was the most damaging in D. zibethinus, Artocarpus heterophyllus, and Mangifera indica. Increasingly globalized food and fiber systems increase risk of disease spread, and the serious threat of C. manginecans incursions into countries where it is not present must be evaluated more thoroughly.
Collapse
Affiliation(s)
- Heru Indrayadi
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
- Corporate R&D PT Arara Abadi - Sinarmas Forestry, Siak Regency, Riau 28772, Indonesia
| | - Morag Glen
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | - David Ratkowsky
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Anto Rimbawanto
- Research Centre for Plant Conservation, Botanic Gardens and Forestry, National Research and Innovation Agency, Yogyakarta, Indonesia
| | - Budi Tjahjono
- Corporate R&D PT Arara Abadi - Sinarmas Forestry, Siak Regency, Riau 28772, Indonesia
| | - Caroline Mohammed
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
4
|
Harrington TC, Ferreira MA, Somasekhara YM, Vickery J, Mayers CG. An expanded concept of Ceratocystis manginecans and five new species in the Latin American clade of Ceratocystis. Mycologia 2024; 116:184-212. [PMID: 38127644 DOI: 10.1080/00275514.2023.2284070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
The genus Ceratocystis contains a number of emerging plant pathogens, mostly members of the Latin American Clade (LAC), in which there are several unresolved taxonomic controversies. Among the most important are Brazilian pathogens in the C. fimbriata complex, C. manginecans and C. eucalypticola. Representatives of C. manginecans and C. eucalypticola from India and China, respectively, were shown to be fully interfertile in laboratory matings, and hybrids between the putative species were identified on Punica in India. An Indian tester strain was sexually compatible with representatives of what has been considered C. fimbriata on numerous hosts across Brazil. In this revision of the LAC, the name C. fimbriata is restricted to the widely dispersed Ipomoea strain, and C. manginecans is recognized as a Brazilian species that is important on Mangifera, Eucalyptus, and many other crops. C. mangivora and C. mangicola are also considered synonyms of C. manginecans. Based on phylogenetics and mating studies, two other Brazilian species are recognized: C. atlantica, sp. nov., and C. alfenasii, sp. nov., each with wide host ranges. Three new Caribbean species are recognized based on phylogenetics and earlier inoculation studies: C. costaricensis, sp. nov., on Coffea, C. cubensis, sp. nov., on Spathodea, and C. xanthosomatis, sp. nov., on the vegetatively propagated aroids Xanthosoma and Syngonium. Some of the other Ceratocystis species were based primarily on unique internal transcribed spacer (ITS) rDNA sequences, but the unreliability of rDNA sequences was demonstrated when intraspecific crossing of isolates with differing ITS sequences generated single-ascospore progeny with intragenomic variation in ITS sequences and others with new ITS sequences. Species recognition in Ceratocystis should use phenotype, including intersterility tests, to help identify which lineages are species. Although some species remain under-studied, we recognize 16 species in the LAC, all believed to be native to Latin America, the Caribbean region, or eastern USA.
Collapse
Affiliation(s)
- T C Harrington
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, lowa 50011
| | - M A Ferreira
- Department of Plant Pathology, Universidade Federal de Lavras, Lavras 37203-202
| | - Y M Somasekhara
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore 506 605
| | - Jenna Vickery
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, lowa 50011
| | - Chase G Mayers
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850
| |
Collapse
|
5
|
Wingfield BD, Berger DK, Coetzee MPA, Duong TA, Martin A, Pham NQ, van den Berg N, Wilken PM, Arun-Chinnappa KS, Barnes I, Buthelezi S, Dahanayaka BA, Durán A, Engelbrecht J, Feurtey A, Fourie A, Fourie G, Hartley J, Kabwe ENK, Maphosa M, Narh Mensah DL, Nsibo DL, Potgieter L, Poudel B, Stukenbrock EH, Thomas C, Vaghefi N, Welgemoed T, Wingfield MJ. IMA genome‑F17 : Draft genome sequences of an Armillaria species from Zimbabwe, Ceratocystis colombiana, Elsinoë necatrix, Rosellinia necatrix, two genomes of Sclerotinia minor, short‑read genome assemblies and annotations of four Pyrenophora teres isolates from barley grass, and a long-read genome assembly of Cercospora zeina. IMA Fungus 2022; 13:19. [PMID: 36411457 PMCID: PMC9677705 DOI: 10.1186/s43008-022-00104-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Brenda D. Wingfield
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dave K. Berger
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Martin P. A. Coetzee
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A. Duong
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Anke Martin
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Nam Q. Pham
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Noelani van den Berg
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P. Markus Wilken
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kiruba Shankari Arun-Chinnappa
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,PerkinElmer Pty Ltd., Level 2, Building 5, Brandon Business Park, 530‑540, Springvale Road, Glen Waverley, VIC 3150 Australia
| | - Irene Barnes
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sikelela Buthelezi
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | | | - Alvaro Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, Riau 28300 Indonesia
| | - Juanita Engelbrecht
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alice Feurtey
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Arista Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Gerda Fourie
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jesse Hartley
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Eugene N. K. Kabwe
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Mkhululi Maphosa
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Deborah L. Narh Mensah
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa ,grid.423756.10000 0004 1764 1672CSIR, Food Research Institute, Accra, Ghana
| | - David L. Nsibo
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| | - Lizel Potgieter
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Barsha Poudel
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Eva H. Stukenbrock
- grid.419520.b0000 0001 2222 4708Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany ,grid.9764.c0000 0001 2153 9986Environmental Genomics, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - Chanel Thomas
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Niloofar Vaghefi
- grid.1048.d0000 0004 0473 0844Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia ,grid.1008.90000 0001 2179 088XSchool of Agriculture and Food, University of Melbourne, Parkville, VIC 3010 Australia
| | - Tanya Welgemoed
- grid.49697.350000 0001 2107 2298Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- grid.49697.350000 0001 2107 2298Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028 South Africa
| |
Collapse
|