1
|
de Abreu Almeida M, Baeza LC, Silva LBR, Bernardes-Engemann AR, Almeida-Silva F, Coelho RA, de Andrade IB, Corrêa-Junior D, Frases S, Zancopé-Oliveira RM, Alanio A, Taborda CP, Almeida-Paes R. Auranofin is active against Histoplasma capsulatum and reduces the expression of virulence-related genes. PLoS Negl Trop Dis 2024; 18:e0012586. [PMID: 39374315 PMCID: PMC11495550 DOI: 10.1371/journal.pntd.0012586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/22/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Auranofin is an approved anti-rheumatic drug that has a broad-range inhibitory action against several microorganisms, including human pathogenic fungi. The auranofin activity against Histoplasma capsulatum, the dimorphic fungus that causes histoplasmosis, has not been properly addressed. Since there are few therapeutic options for this life-threatening systemic mycosis, this study evaluated the effects of auranofin on H. capsulatum growth and expression of virulence factors. METHODOLOGY/PRINCIPAL FINDINGS Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) of auranofin against 15 H. capsulatum strains with distinct genetic backgrounds were determined using the yeast form of the fungus and a microdilution protocol. Auranofin activity was also assessed on a macrophage model of infection and on a Tenebrio molitor invertebrate animal model. Expression of virulence-related genes was compared between auranofin treated and untreated H. capsulatum yeast cells using a quantitative PCR assay. Auranofin affected the growth of different strains of H. capsulatum, with MIC and MFC values ranging from 1.25 to 5.0 μM and from 2.5 to >10 μM, respectively. Auranofin was able to kill intracellular H. capsulatum yeast cells and conferred protection against the fungus in the experimental animal model of infection. Moreover, the expression of catalase A, HSP70, superoxide dismutase, thioredoxin reductase, serine proteinase, cytochrome C peroxidase, histone 2B, formamidase, metallopeptidase, Y20 and YPS3 proteins were reduced after six hours of auranofin treatment. CONCLUSIONS/SIGNIFICANCE: Auranofin is fungicidal against H. capsulatum and reduces the expression of several virulence-related genes, which makes this anti-rheumatic drug a good candidate for new medicines against histoplasmosis.
Collapse
Affiliation(s)
- Marcos de Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Lilian Cristiane Baeza
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Brazil
| | - Leandro B. R. Silva
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Andréa Reis Bernardes-Engemann
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Rede Micologia, FAPERJ, Rio de Janeiro, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alexandre Alanio
- Institut Pasteur, Université Paris Cité, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Paris, France
| | - Carlos Pelleschi Taborda
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Rede Micologia, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Sepúlveda VE, Goldman WE, Matute DR. Genotypic diversity, virulence, and molecular genetic tools in Histoplasma. Microbiol Mol Biol Rev 2024; 88:e0007623. [PMID: 38819148 PMCID: PMC11332355 DOI: 10.1128/mmbr.00076-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
SUMMARYHistoplasmosis is arguably the most common fungal respiratory infection worldwide, with hundreds of thousands of new infections occurring annually in the United States alone. The infection can progress in the lung or disseminate to visceral organs and can be difficult to treat with antifungal drugs. Histoplasma, the causative agent of the disease, is a pathogenic fungus that causes life-threatening lung infections and is globally distributed. The fungus has the ability to germinate from conidia into either hyphal (mold) or yeast form, depending on the environmental temperature. This transition also regulates virulence. Histoplasma and histoplasmosis have been classified as being of emergent importance, and in 2022, the World Health Organization included Histoplasma as 1 of the 19 most concerning human fungal pathogens. In this review, we synthesize the current understanding of the ecological niche, evolutionary history, and virulence strategies of Histoplasma. We also describe general patterns of the symptomatology and epidemiology of histoplasmosis. We underscore areas where research is sorely needed and highlight research avenues that have been productive.
Collapse
Affiliation(s)
- Victoria E. Sepúlveda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William E. Goldman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel R. Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Sepúlveda VE, Rader JA, Li J(J, Goldman WE, Matute DR. Phenotypic characterization of cryptic species in the fungal pathogen Histoplasma. mSphere 2024; 9:e0000924. [PMID: 38771035 PMCID: PMC11332167 DOI: 10.1128/msphere.00009-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/11/2024] [Indexed: 05/22/2024] Open
Abstract
Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transition into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. Genomic work has revealed that Histoplasma is composed of at least five cryptic phylogenetic species that differ genetically. Three of those lineages have received new names. Here, we evaluated multiple phenotypic characteristics (colony morphology, secreted proteolytic activity, yeast size, and growth rate) of strains from five of the phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: Histoplasma capsulatum sensu stricto, Histoplasma ohiense, Histoplasma mississippiense, Histoplasma suramericanum, and an African lineage. We report diagnostic traits for three species. The other two species can be identified by a combination of traits. Our results suggest that (i) there are significant phenotypic differences among the cryptic species of Histoplasma and (ii) those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.IMPORTANCEIdentifying species boundaries is a critical component of evolutionary biology. Genome sequencing and the use of molecular markers have advanced our understanding of the evolutionary history of fungal pathogens, including Histoplasma, and have allowed for the identification of new species. This is especially important in organisms where morphological characteristics have not been detected. In this study, we revised the taxonomic status of the four named species of the genus Histoplasma, H. capsulatum sensu stricto (ss), H. ohiense, H. mississippiense, and H. suramericanum, and propose the use of species-specific phenotypic traits to aid their identification when genome sequencing is not available. These results have implications not only for evolutionary study of Histoplasma but also for clinicians, as the Histoplasma species could determine the outcome of disease and treatment needed.
Collapse
Affiliation(s)
- Victoria E. Sepúlveda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan A. Rader
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jingbaoyi (Janet) Li
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William E. Goldman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel R. Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
de Souza Rabello VB, de Melo Teixeira M, Meyer W, Irinyi L, Xavier MO, Poester VR, Pereira Brunelli JG, Almeida-Silva F, Bernardes-Engemann AR, Ferreira Gremião ID, Dos Santos Angelo DF, Clementino IJ, Almeida-Paes R, Zancopé-Oliveira RM. Multi-locus sequencing typing reveals geographically related intraspecies variability of Sporothrix brasiliensis. Fungal Genet Biol 2024; 170:103845. [PMID: 38040325 DOI: 10.1016/j.fgb.2023.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Sporotrichosis is a subcutaneous mycosis caused by pathogenic Sporothrix species. Among them, Sporothrix brasiliensis is the main species associated with endemic regions in South America, especially Brazil. It is highly virulent and can be spread through zoonotic transmission. Molecular epidemiological surveys are needed to determine the extent of genetic variation, to investigate outbreaks, and to identify genotypes associated with antifungal resistance and susceptibility. This study investigated the sequence variation of different constitutive genes and established a novel multilocus sequence typing (MLST) scheme for S. brasiliensis. Specific primers were designed for 16 genes using Primer-BLAST software based on the genome sequences of three S. brasiliensis strains (ATCC MYA-4823, A001 and A005). Ninety-one human, animal, and environmental S. brasiliensis isolates from different Brazilian geographic regions (South, Southeast, Midwest and Northeast) andtwo isolates from Paraguay were sequenced. The loci that presented the highest nucleotide diversity (π) were selected for the MLST scheme. Among the 16 studied genetic loci, four presented increased π value and were able to distinguish all S. brasiliensis isolates into seven distinct haplotypes. The PCR conditions were standardized for four loci. Some of the obtained haplotypes were associated with the geographic origin of the strains. This study presents an important advance in the understanding of this important agent of sporotrichosis in Brazil. It significantly increased the discriminatory power for genotyping of S. brasiliensis isolates, and enabled new contributions to the epidemiological studies of this human and animal pathogen in Brazil and in other countries.
Collapse
Affiliation(s)
- Vanessa Brito de Souza Rabello
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.
| | - Marcus de Melo Teixeira
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Wieland Meyer
- Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health, Sydney Infectious Diseases Institute, University of Sydney, Westmead Hospital, Research and Education Network, Westmead Institute for Medical Research, Sydney, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health, Sydney Infectious Diseases Institute, University of Sydney, Westmead Hospital, Research and Education Network, Westmead Institute for Medical Research, Sydney, Australia
| | - Melissa Orzechowski Xavier
- Laboratório de Micologia e Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande (FAMED-FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Vanice Rodrigues Poester
- Laboratório de Micologia e Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande (FAMED-FURG), Rio Grande, Rio Grande do Sul, Brazil
| | | | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Reis Bernardes-Engemann
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Isabella Dib Ferreira Gremião
- Laboratório de Pesquisa Clínica em Dermatozoonoses em Animais Domésticos, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Inácio José Clementino
- Departamento de Medicina Veterinária, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Sepúlveda VE, Rader JA, Li J(J, Goldman WE, Matute DR. Phenotypic characterization of cryptic species in the fungal pathogen Histoplasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574719. [PMID: 38260643 PMCID: PMC10802462 DOI: 10.1101/2024.01.08.574719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Histoplasmosis is an endemic mycosis that often presents as a respiratory infection in immunocompromised patients. Hundreds of thousands of new infections are reported annually around the world. The etiological agent of the disease, Histoplasma, is a dimorphic fungus commonly found in the soil where it grows as mycelia. Humans can become infected by Histoplasma through inhalation of its spores (conidia) or mycelial particles. The fungi transitions into the yeast phase in the lungs at 37°C. Once in the lungs, yeast cells reside and proliferate inside alveolar macrophages. We have previously described that Histoplasma is composed of at least five cryptic species that differ genetically, and assigned new names to the lineages. Here we evaluated multiple phenotypic characteristics of 12 strains from five phylogenetic species of Histoplasma to identify phenotypic traits that differentiate between these species: H. capsulatum sensu stricto, H. ohiense, H. mississippiense, H. suramericanum, and an African lineage. We report diagnostic traits for two species. The other three species can be identified by a combination of traits. Our results suggest that 1) there are significant phenotypic differences among the cryptic species of Histoplasma, and 2) that those differences can be used to positively distinguish those species in a clinical setting and for further study of the evolution of this fungal pathogen.
Collapse
Affiliation(s)
| | | | | | - William E. Goldman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill
| | - Daniel R. Matute
- Department of Biology, University of North Carolina at Chapel Hill
| |
Collapse
|
6
|
Rader JA, Pivovarnik MA, Vantilburg ME, Whitehouse LS. PhyloMatcher: a tool for resolving conflicts in taxonomic nomenclature. BIOINFORMATICS ADVANCES 2023; 3:vbad144. [PMID: 37840907 PMCID: PMC10576170 DOI: 10.1093/bioadv/vbad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Summary Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of the National Center for Biotechnology Information Taxonomy and Global Biodiversity Information Facility databases to find associated synonyms with given target species names. Availability and implementation PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page.
Collapse
Affiliation(s)
- Jonathan A Rader
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Madelyn A Pivovarnik
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Matias E Vantilburg
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, United States
| | - Logan S Whitehouse
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7264, United States
| |
Collapse
|
7
|
Bagal UR, Gade L, Benedict K, Howell V, Christophe N, Gibbons-Burgener S, Hallyburton S, Ireland M, McCracken S, Metobo AK, Signs K, Warren KA, Litvintseva AP, Chow NA. A Phylogeographic Description of Histoplasma capsulatum in the United States. J Fungi (Basel) 2023; 9:884. [PMID: 37754992 PMCID: PMC10532573 DOI: 10.3390/jof9090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Histoplasmosis is one of the most under-diagnosed and under-reported endemic mycoses in the United States. Histoplasma capsulatum is the causative agent of this disease. To date, molecular epidemiologic studies detailing the phylogeographic structure of H. capsulatum in the United States have been limited. We conducted genomic sequencing using isolates from histoplasmosis cases reported in the United States. We identified North American Clade 2 (NAm2) as the most prevalent clade in the country. Despite high intra-clade diversity, isolates from Minnesota and Michigan cases were predominately clustered by state. Future work incorporating environmental sampling and veterinary surveillance may further elucidate the molecular epidemiology of H. capsulatum in the United States and how genomic sequencing can be applied to the surveillance and outbreak investigation of histoplasmosis.
Collapse
Affiliation(s)
- Ujwal R. Bagal
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
- ASRT Inc., Atlanta, GA 30080, USA
| | - Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kaitlin Benedict
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Victoria Howell
- Kentucky Department for Public Health, Frankfort, KY 40601, USA
| | | | | | | | - Malia Ireland
- Minnesota Department of Health, St. Paul, MN 55101, USA
| | | | | | - Kimberly Signs
- Michigan Department of Health and Human Services, Lansing, MI 48933, USA
| | | | | | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
8
|
Rader JA, Pivovarnik MA, Vantilburg ME, Whitehouse LS. PhyloMatcher: a tool for resolving conflicts in taxonomic nomenclature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552263. [PMID: 37609275 PMCID: PMC10441299 DOI: 10.1101/2023.08.07.552263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Summary Large-scale comparative studies rely on the application of both phylogenetic trees and phenotypic data, both of which come from a variety of sources, but due to the changing nature of phylogenetic classification over time, many taxon names in comparative datasets do not match the nomenclature in phylogenetic trees. Manual curation of taxonomic synonyms in large comparative datasets can be daunting. To address this issue, we introduce PhyloMatcher, a tool which allows for programmatic querying of two commonly used taxonomic databases to find associated synonyms with given target species names. Availability and implementation PhyloMatcher is easily installed as a Python package with pip, or as a standalone GUI application. PhyloMatcher source code and documentation are freely available at https://github.com/Lswhiteh/PhyloMatcher, the GUI application can be downloaded from the Releases page. Contact Lswhiteh@unc.edu. Supplemental Information We provide documentation for PhyloMatcher, including walkthrough instructions for the GUI application on the Releases page of https://github.com/Lswhiteh/PhyloMatcher.
Collapse
Affiliation(s)
- Jonathan A. Rader
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Matias E. Vantilburg
- Dept. of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Logan S. Whitehouse
- Dept. of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Almeida-Silva F, Almeida MDA, Rabello VBDS, Zancopé-Oliveira RM, Baeza LC, Lamas CDC, Lima MA, de Macedo PM, Gutierrez-Galhardo MC, Almeida-Paes R, Freitas DFS. Evaluation of Five Non-Culture-Based Methods for the Diagnosis of Meningeal Sporotrichosis. J Fungi (Basel) 2023; 9:jof9050535. [PMID: 37233246 DOI: 10.3390/jof9050535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Sporotrichosis is the main subcutaneous mycosis worldwide. Several complications, including meningeal forms, can be observed in immunocompromised individuals. The sporotrichosis diagnosis is time-consuming due to the culture's limitations. The low fungal burden in cerebrospinal fluid (CSF) samples is another important drawback in the diagnosis of meningeal sporotrichosis. Molecular and immunological tests can improve the detection of Sporothrix spp. in clinical specimens. Therefore, the following five non-culture-based methods were evaluated for the detection of Sporothrix spp. in 30 CSF samples: (i) species-specific polymerase chain reaction (PCR); (ii) nested PCR; (iii) quantitative PCR; (iv) enzyme-linked immunosorbent assay (ELISA) for IgG detection; and (v) ELISA for IgM detection. The species-specific PCR was unsuccessful in the diagnosis of the meningeal sporotrichosis. The other four methods presented substantial levels of sensitivity (78.6% to 92.9%) and specificity (75% to 100%) for the indirect detection of Sporothrix spp. Both DNA-based methods presented similar accuracy (84.6%). Both ELISA methods were concomitantly positive only for patients with sporotrichosis and clinical signs of meningitis. We suggest that these methods should be implemented in clinical practice to detect Sporothrix spp. in CSF early, which may optimize treatment, augment the chances of a cure, and improve the prognosis of affected individuals.
Collapse
Affiliation(s)
- Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Marcos de Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Vanessa Brito de Souza Rabello
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Lilian Cristiane Baeza
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel 85819-110, PR, Brazil
| | - Cristiane da Cruz Lamas
- Serviço Médico, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Marco Antonio Lima
- Laboratório de Pesquisa Clínica em Neuroinfecções, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Priscila Marques de Macedo
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Maria Clara Gutierrez-Galhardo
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Dayvison Francis Saraiva Freitas
- Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
10
|
Almeida MA, Bernardes-Engemann AR, Coelho RA, Lugones CJG, de Andrade IB, Corrêa-Junior D, de Oliveira SSC, Dos Santos ALS, Frases S, Rodrigues ML, Valente RH, Zancopé-Oliveira RM, Almeida-Paes R. Mebendazole Inhibits Histoplasma capsulatum In Vitro Growth and Decreases Mitochondrion and Cytoskeleton Protein Levels. J Fungi (Basel) 2023; 9:jof9030385. [PMID: 36983553 PMCID: PMC10051957 DOI: 10.3390/jof9030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Histoplasmosis is a frequent mycosis in people living with HIV/AIDS and other immunocompromised hosts. Histoplasmosis has high rates of mortality in these patients if treatment is unsuccessful. Itraconazole and amphotericin B are used to treat histoplasmosis; however, both antifungals have potentially severe pharmacokinetic drug interactions and toxicity. The present study determined the minimal inhibitory and fungicidal concentrations of mebendazole, a drug present in the NIH Clinical Collection, to establish whether it has fungicidal or fungistatic activity against Histoplasma capsulatum. Protein extracts from H. capsulatum yeasts, treated or not with mebendazole, were analyzed by proteomics to understand the metabolic changes driven by this benzimidazole. Mebendazole inhibited the growth of 10 H. capsulatum strains, presenting minimal inhibitory concentrations ranging from 5.0 to 0.08 µM. Proteomics revealed 30 and 18 proteins exclusively detected in untreated and mebendazole-treated H. capsulatum yeast cells, respectively. Proteins related to the tricarboxylic acid cycle, cytoskeleton, and ribosomes were highly abundant in untreated cells. Proteins related to the nitrogen, sulfur, and pyrimidine metabolisms were enriched in mebendazole-treated cells. Furthermore, mebendazole was able to inhibit the oxidative metabolism, disrupt the cytoskeleton, and decrease ribosomal proteins in H. capsulatum. These results suggest mebendazole as a drug to be repurposed for histoplasmosis treatment.
Collapse
Affiliation(s)
- Marcos Abreu Almeida
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Andrea Reis Bernardes-Engemann
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Camila Jantoro Guzman Lugones
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Simone Santiago Carvalho de Oliveira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - André Luis Souza Dos Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| | | | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rosely Maria Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
11
|
Genetic Diversity of Human Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-023-00188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
12
|
Considerations about the Geographic Distribution of Histoplasma Species. Appl Environ Microbiol 2022; 88:e0201021. [PMID: 35262368 DOI: 10.1128/aem.02010-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histoplasmosis is a mycotic infection principally affecting pulmonary tissue; sometimes, histoplasmosis can progress into a systemic disease. This infection involves immunocompetent and immunosuppressed human and other mammalian hosts, depending on particular circumstances. Histoplasmosis infection has been documented worldwide. The infection is acquired by inhaling infective mycelial propagules of the dimorphic fungus Histoplasma capsulatum. New reports of clinical cases of histoplasmosis in extreme latitudes could be related to human social adaptations and climate changes in the world, which are creating new favorable environments for this fungus and for bats, its major natural reservoirs and dispersers. Histoplasma has been isolated from most continents, and it is considered a complex of cryptic species, consisting of various groups of isolates that differ genetically and correlate with a particular geographic distribution. Based on updated studies, Histoplasma taxonomy is adjusting to new genetic data. Here, we have suggested that Histoplasma has at least 14 phylogenetic species distributed worldwide and new genotypes that could be under deliberation. Histoplasma's geographic radiation began in South America millions of years ago when the continents were joined and the climate was favorable. For fungal spreading, the role of bats and some birds is crucial, although other natural factors could also participate.
Collapse
|