1
|
Muvunyi CM, Ngabonziza JCS, Florence M, Mukagatare I, Twagirumukiza M, Ahmed A, Siddig EE. Diversity and Distribution of Fungal Infections in Rwanda: High Risk and Gaps in Knowledge, Policy, and Interventions. J Fungi (Basel) 2024; 10:658. [PMID: 39330417 PMCID: PMC11433616 DOI: 10.3390/jof10090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal infections (FIs) are spreading globally, raising a significant public health concern. However, its documentation remains sparse in Africa, particularly in Rwanda. This report provides a comprehensive review of FIs in Rwanda based on a systematic review of reports published between 1972 and 2022. The findings reveal a rich diversity of fungal pathogens, including Blastomyces, Candida, Cryptococcus, Histoplasma, Microsporum, Pneumocystis, Rhinosporidium, and Trichophyton caused human infections. Candida infections predominantly affect the vagina mucosa, while Histoplasma duboisi was linked to disseminated infections. Other pathogens, such as Blastomyces dermatitidis and Rhinosporidium seeberi, were associated with cerebellar and nasal mucosa infections, respectively. The widespread observation of soilborne fungi affecting bean crops highlights the pathogens' threat to agricultural productivity, food security, and socioeconomic stability, as well as potential health impacts on humans, animals, and the environment. Of particular importance is that there is no information about FIs among animals in the country. Moreover, the analysis underscores significant limitations in the detection, reporting, and healthcare services related to FIs in the country, indicating gaps in diagnostic capacity and surveillance systems. This is underscored by the predominant use of traditional diagnostic techniques, including culture, cytology, and histopathology in the absence of integrating more sensitive and specific molecular tools in investigating FIs. Developing the diagnostic capacities and national surveillance systems are urgently needed to improve the health of crops, animals, and humans, as well as food security and socioeconomic stability in Rwanda. Also, it is important to indicate severe gaps in the evidence to inform policymaking, guide strategic planning, and improve healthcare and public health services, underscoring the urgent need to build national capacity in fungal diagnosis, surveillance, and research. Raising awareness among the public, scientific community, healthcare providers, and policymakers remains crucial. Furthermore, this report reveals the threats of FIs on public health and food insecurity in Rwanda. A multisectoral one health strategy is essential in research and intervention to determine and reduce the health and safety impacts of fungal pathogens on humans, animals, and the environment.
Collapse
Affiliation(s)
| | - Jean Claude Semuto Ngabonziza
- Department of Clinical Biology, University of Rwanda, Kigali P.O. Box 3900, Rwanda
- Research, Innovation and Data Science Division, Rwanda Biomedical Centre, Kigali P.O. Box 7162, Rwanda
| | - Masaisa Florence
- Department of Internal Medicine and Hematology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 7162, Rwanda
- Clinical Education and Research Division, Kigali University Teaching Hospital, Kigali P.O. Box 655, Rwanda
| | - Isabelle Mukagatare
- Biomedical Services Department, Rwanda Biomedical Centre, Kigali P.O. Box 7162, Rwanda
| | - Marc Twagirumukiza
- Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Ayman Ahmed
- Rwanda Biomedical Centre, Kigali P.O. Box 7162, Rwanda;
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan
| | - Emmanuel Edwar Siddig
- Unit of Applied Medical Sciences, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum 11111, Sudan;
| |
Collapse
|
2
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G. Biogeographic and co-occurrence network differentiation of fungal communities in warm-temperate montane soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174911. [PMID: 39038676 DOI: 10.1016/j.scitotenv.2024.174911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Studying the biogeographic patterns of fungal communities across altitudinal and soil depth gradients is essential for understanding how environmental variations shape the diversity and functionality of these complex ecological assemblages. Here, we evaluated the response and assembly patterns of fungal communities to altitude and soil depth, and the co-occurrence patterns influencing soil fungal metabolic preferences on Dongling Mountain. We observed significant variations in fungal β-diversity, driven by elevation and soil depth, with climatic parameters (MAT and MAP) and nutrient concentrations (TOC, TP, and TN) serving as prominent influencers. Additionally, we found that the multiple substrate-induced respiration rate of fungi degrading various carbon substrates was diminished in high-altitude and subsurface soils compared to low-altitude and surface soils. Stochastic processes play a more important role in controlling fungal community assembly than deterministic processes, with dispersal limitation emerging as the main driver of community assembly. While greater network complexity was evident in the topsoil compared to the subsoil, both layers harbored altitude-sensitive OTUs (asOTUs) that belonging to distinct modules. Moreover, fungal groups sensitive to the same altitude exhibited similar metabolic preferences. The asOTUs designated for lower altitude areas favored unstable carbon substrates (glucose and sucrose), while those designated as higher altitude areas exhibited a preference for recalcitrant carbon (xylan and lignin). This evidence suggests that soil fungal communities respond to environmental changes by trading off their life strategies and metabolic characteristics.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Fan Q, Liu K, Wang Z, Liu D, Li T, Hou H, Zhang Z, Chen D, Zhang S, Yu A, Deng Y, Cui X, Che R. Soil microbial subcommunity assembly mechanisms are highly variable and intimately linked to their ecological and functional traits. Mol Ecol 2024; 33:e17302. [PMID: 38421102 DOI: 10.1111/mec.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Revealing the mechanisms underlying soil microbial community assembly is a fundamental objective in molecular ecology. However, despite increasing body of research on overall microbial community assembly mechanisms, our understanding of subcommunity assembly mechanisms for different prokaryotic and fungal taxa remains limited. Here, soils were collected from more than 100 sites across southwestern China. Based on amplicon high-throughput sequencing and iCAMP analysis, we determined the subcommunity assembly mechanisms for various microbial taxa. The results showed that dispersal limitation and homogenous selection were the primary drivers of soil microbial community assembly in this region. However, the subcommunity assembly mechanisms of different soil microbial taxa were highly variable. For instance, the contribution of homogenous selection to Crenarchaeota subcommunity assembly was 70%, but it was only around 10% for the subcommunity assembly of Actinomycetes, Gemmatimonadetes and Planctomycetes. The assembly of subcommunities including microbial taxa with higher occurrence frequencies, average relative abundance and network degrees, as well as wider niches tended to be more influenced by homogenizing dispersal and drift, but less affected by heterogeneous selection and dispersal limitation. The subcommunity assembly mechanisms also varied substantially among different functional guilds. Notably, the subcommunity assembly of diazotrophs, nitrifiers, saprotrophs and some pathogens were predominantly controlled by homogenous selection, while that of denitrifiers and fungal pathogens were mainly affected by stochastic processes such as drift. These findings provide novel insights into understanding soil microbial diversity maintenance mechanisms, and the analysis pipeline holds significant value for future research.
Collapse
Affiliation(s)
- Qiuping Fan
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Kaifang Liu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Zelin Wang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Dong Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ting Li
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Hou
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Zejin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Danhong Chen
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Anlan Yu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yongcui Deng
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Grishkan I, Kidron GJ, Rodriguez-Berbel N, Miralles I, Ortega R. Altitudinal Gradient and Soil Depth as Sources of Variations in Fungal Communities Revealed by Culture-Dependent and Culture-Independent Methods in the Negev Desert, Israel. Microorganisms 2023; 11:1761. [PMID: 37512933 PMCID: PMC10383159 DOI: 10.3390/microorganisms11071761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
We examined fungal communities in soil profiles of 0-10 cm depth along the altitudinal gradient of 250-530-990 m.a.s.l. at the Central Negev Desert, Israel, which benefit from similar annual precipitation (95 mm). In the soil samples collected in the summer of 2020, a mycobiota accounting for 169 species was revealed by both culture-dependent and culture-independent (DNA-based) methodologies. The impact of soil depth on the variations in fungal communities was stronger than the impact of altitude. Both methodologies displayed a similar tendency in the composition of fungal communities: the prevalence of melanin-containing species with many-celled large spores (mainly Alternaria spp.) in the uppermost layers and the depth-wise increase in the proportion of light-colored species producing a high amount of small one-celled spores. The culturable and the DNA-based fungal communities had only 13 species in common. The differences were attributed to the pros and cons of each method. Nevertheless, despite the drawbacks, the employment of both methodologies has an advantage in providing a more comprehensive picture of fungal diversity in soils.
Collapse
Affiliation(s)
- Isabella Grishkan
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Mount Carmel, Haifa 3498838, Israel
| | - Giora J Kidron
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram Campus, Jerusalem 91904, Israel
| | - Natalia Rodriguez-Berbel
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agrifood, University of Almeria, E-04120 Almería, Spain
| | - Isabel Miralles
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agrifood, University of Almeria, E-04120 Almería, Spain
| | - Raúl Ortega
- Department of Agronomy & Center for Intensive Mediterranean Agrosystems and Agrifood, University of Almeria, E-04120 Almería, Spain
| |
Collapse
|
5
|
Wang M, Wang C, Yu Z, Wang H, Wu C, Masoudi A, Liu J. Fungal diversities and community assembly processes show different biogeographical patterns in forest and grassland soil ecosystems. Front Microbiol 2023; 14:1036905. [PMID: 36819045 PMCID: PMC9928764 DOI: 10.3389/fmicb.2023.1036905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Soil fungal community has been largely explored by comparing their natural diversity. However, there is a relatively small body of literature concerned with fungal community assembly processes and their co-occurrence network correlations carried out across large spatial-temporal scales with complex environmental gradients in natural ecosystems and different habitats in China. Thus, soil fungal community assembly processes were assessed to predict changes in soil function in 98 different forest and grassland sites from the Sichuan, Hubei, and Hebei Provinces of China using high-throughput sequencing of nuclear ribosomal internal transcribed spacer 2 (ITS-2). The 10 most abundant fungal phyla results showed that Ascomycota was the most abundant phylum in forests from Sichuan province (64.42%) and grassland habitats from Hebei province (53.46%). Moreover, core fungal taxa (487 OTUs) represented 0.35% of total fungal OTUs. We observed higher fungal Shannon diversity and richness (the Chao1 index) from diverse mixed forests of the Sichuan and Hubei Provinces than the mono-cultured forest and grassland habitats in Hebei Province. Although fungal alpha and beta diversities exhibited different biogeographical patterns, the fungal assembly pattern was mostly driven by dispersal limitation than selection in different habitats. Fungal co-occurrence analyses showed that the network was more intense at Saihanba National Forest Park (SNFP, Hebei). In contrast, the co-occurrence network was more complex at boundaries between forests and grasslands at SNFP. Additionally, the highest number of positive (co-presence or co-operative) correlations of fungal genera were inferred from grassland habitat, which led fungal communities to form commensalism relationships compared to forest areas with having higher negative correlations (mutual exclusion or competitive). The generalized additive model (GAM) analysis showed that the association of fungal Shannon diversity and richness indices with geographical coordinates did not follow a general pattern; instead, the fluctuation of these indices was restricted to local geographical coordinates at each sampling location. These results indicated the existence of a site effect on the diversity of fungal communities across our sampling sites. Our observation suggested that higher fungal diversity and richness of fungal taxa in a particular habitat are not necessarily associated with more complex networks.
Collapse
|
6
|
Song L, Yang T, Xia S, Yin Z, Liu X, Li S, Sun R, Gao H, Chu H, Ma C. Soil depth exerts stronger impact on bacterial community than elevation in subtropical forests of Huangshan Mountain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158438. [PMID: 36055501 DOI: 10.1016/j.scitotenv.2022.158438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The elevational distribution of bacterial communities in the surface soil of natural mountain forests has been widely studied. However, it remains unknown if microbial communities in surface and sub-surface soils exhibit a similar distribution pattern with elevation. To do so, Illumina HiSeq sequencing was applied to study the alterations in soil bacterial communities of different soil layers, along an altitudinal gradient from 500 to 1100 m on Huangshan Mountain in Anhui Province, China. Our results revealed a significant higher diversity of the bacterial communities in surface soil layers than in subsurface layers. Adonis analysis showed that soil layer had a greater influence on the composition of the bacterial communities than the elevation. The distance-based multivariate linear model suggested that soil labile organic carbon and elevation were the main element influencing the bacterial community composition in surface and subsurface soils, respectively. A remarkable difference appeared between the co-occurrence network structures of bacterial communities in different soil layers. Compared with the subsurface soil, surface soil had more edges, average degree, and much higher clustering coefficient. The two-way ANOVA results highlighted the significant impact of soil layers on the topological properties of the network compared with that of elevation. The keystone species belonged to Rhodospirillaceae in the surface soil, while the OTUs belonged to Actinomycetales in the subsurface soil. Collectively, our results demonstrate that the effects of soil depth on soil bacterial community composition and network properties of subtropical forest in Huangshan Mountain were significantly higher than those of elevation, with different keystone species in different soil layers. These findings can be served as an important basis for better understanding the microbial functions influencing the maintenance of habitat heterogeneity, biodiversity, and ecosystem services in forests ecosystems.
Collapse
Affiliation(s)
- Luyao Song
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shangguang Xia
- Anhui Huangshan National Positioning Observation and Research Station of Forest Ecosystem, Anhui Academy of Forestry, Hefei 230031, China
| | - Zhong Yin
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaopeng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruibo Sun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Wang Y, Xu Y, Maitra P, Babalola BJ, Zhao Y. Temporal variations in root-associated fungal communities of Potaninia mongolica, an endangered relict shrub species in the semi-arid desert of Northwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:975369. [PMID: 36311128 PMCID: PMC9597089 DOI: 10.3389/fpls.2022.975369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The semi-arid region of the Western Ordos plateau in Inner Mongolia, China, is home to a critically endangered shrub species, Potaninia mongolica, which originates from ancient Mediterranean regions. Root-associated microbiomes play important roles in plant nutrition, productivity, and resistance to environmental stress particularly in the harsh desert environment; however, the succession of root-associated fungi during the growth stages of P. mongolica is still unclear. This study aimed to examine root-associated fungal communities of this relict plant species across three seasons (spring, summer and autumn) using root sampling and Illumina Miseq sequencing of internal transcribed spacer 2 (ITS 2) region to target fungi. The analysis detected 698 fungal OTUs in association with P. mongolica roots, and the fungal richness increased significantly from spring to summer and autumn. Eurotiales, Hypocreales, Chaetothyriales, Pleosporales, Helotiales, Agaricales and Xylariales were the dominant fungal orders. Fungal community composition was significantly different between the three seasons, and the fungal taxa at various levels showed biased distribution and preferences. Stochastic processes predominantly drove community assembly of fungi in spring while deterministic processes acted more in the later seasons. The findings revealed the temporal dynamics of root-associated fungal communities of P. mongolica, which may enhance our understanding of biodiversity and changes along with seasonal alteration in the desert, and predict the response of fungal community to future global changes.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| |
Collapse
|
8
|
Guo Y, Ji L, Wang M, Shan C, Shen F, Yang Y, He G, Purahong W, Yang L. View from the Top: Insights into the Diversity and Community Assembly of Ectomycorrhizal and Saprotrophic Fungi along an Altitudinal Gradient in Chinese Boreal Larix gmelinii-Dominated Forests. Microorganisms 2022; 10:1997. [PMID: 36296273 PMCID: PMC9607379 DOI: 10.3390/microorganisms10101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
The altitudinal patterns of soil fungi have attracted considerable attention; however, few studies have investigated the diversity and community assembly of fungal functional guilds along an altitudinal gradient. Here, we explored ectomycorrhizal (EcM) and saprotrophic (SAP) fungal diversity and community assembly along a 470 m vertical gradient (ranging from 830 to 1300 m) on Oakley Mountain, sampling bulk soils in the 0-10 cm and 10-20 cm soil layers of Larix gmelinii-dominated forests. Illumina MiSeq sequencing of the ITS genes was employed to explore the fungal community composition and diversity. The relative abundance of EcM and SAP fungi showed a divergent pattern along an altitudinal gradient, while we observed a consistent altitudinal tendency for EcM and SAP fungal diversity and community assembly. The diversity of both fungal guilds increased with increasing altitude. Altitude and soil moisture were the key factors affecting the community composition of both fungal guilds. In addition, the plant community composition significantly affected the EcM fungal community composition, whereas the dissolved organic nitrogen and ammonium nitrogen contents were the driving factors of SAP fungal community. Despite the effects of vegetation and soil factors, EcM and SAP fungal communities were mainly governed by stochastic processes (especially drift) at different altitudes and soil depths. These results shed new light on the ecology of different fungal functional guilds along an altitudinal gradient, which will provide a deeper understanding of the biogeography of soil fungi.
Collapse
Affiliation(s)
- Yi Guo
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li Ji
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany
| | - Mingwei Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Chengfeng Shan
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fangyuan Shen
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yuchun Yang
- Jilin Academy of Forestry, Changchun 130033, China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, 06120 Halle (Saale), Germany
| | - Lixue Yang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
9
|
Guajardo-Leiva S, Alarcón J, Gutzwiller F, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro M, Crandall KA, Pérez-Losada M, Castro-Nallar E. Source and acquisition of rhizosphere microbes in Antarctic vascular plants. Front Microbiol 2022; 13:916210. [PMID: 36160194 PMCID: PMC9493328 DOI: 10.3389/fmicb.2022.916210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Jaime Alarcón
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Florence Gutzwiller
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gallardo-Cerda
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - Marco Molina-Montenegro
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación en Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Keith A. Crandall
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
- Division of Emergency Medicine, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Children’s National Hospital, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- *Correspondence: Eduardo Castro-Nallar,
| |
Collapse
|
10
|
Chen J, Shi Z, Liu S, Zhang M, Cao X, Chen M, Xu G, Xing H, Li F, Feng Q. Altitudinal Variation Influences Soil Fungal Community Composition and Diversity in Alpine-Gorge Region on the Eastern Qinghai-Tibetan Plateau. J Fungi (Basel) 2022; 8:807. [PMID: 36012795 PMCID: PMC9410234 DOI: 10.3390/jof8080807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Soil fungi play an integral and essential role in maintaining soil ecosystem functions. The understanding of altitude variations and their drivers of soil fungal community composition and diversity remains relatively unclear. Mountains provide an open, natural platform for studying how the soil fungal community responds to climatic variability at a short altitude distance. Using the Illumina MiSeq high-throughput sequencing technique, we examined soil fungal community composition and diversity among seven vegetation types (dry valley shrub, valley-mountain ecotone broadleaved mixed forest, subalpine broadleaved mixed forest, subalpine coniferous-broadleaved mixed forest, subalpine coniferous forest, alpine shrub meadow, alpine meadow) along a 2582 m altitude gradient in the alpine-gorge region on the eastern Qinghai-Tibetan Plateau. Ascomycota (47.72%), Basidiomycota (36.58%), and Mortierellomycota (12.14%) were the top three soil fungal dominant phyla in all samples. Soil fungal community composition differed significantly among the seven vegetation types along altitude gradients. The α-diversity of soil total fungi and symbiotic fungi had a distinct hollow pattern, while saprophytic fungi and pathogenic fungi showed no obvious pattern along altitude gradients. The β-diversity of soil total fungi, symbiotic fungi, saprophytic fungi, and pathogenic fungi was derived mainly from species turnover processes and exhibited a significant altitude distance-decay pattern. Soil properties explained 31.27-34.91% of variation in soil fungal (total and trophic modes) community composition along altitude gradients, and the effects of soil nutrients on fungal community composition varied by trophic modes. Soil pH was the main factor affecting α-diversity of soil fungi along altitude gradients. The β-diversity and turnover components of soil total fungi and saprophytic fungi were affected by soil properties and geographic distance, while those of symbiotic fungi and pathogenic fungi were affected only by soil properties. This study deepens our knowledge regarding altitude variations and their drivers of soil fungal community composition and diversity, and confirms that the effects of soil properties on soil fungal community composition and diversity vary by trophic modes along altitude gradients in the alpine-gorge region.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, 10135 Torino, Italy
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Hongshuang Xing
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Feifan Li
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Qiuhong Feng
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu 610081, China;
| |
Collapse
|