1
|
Hu Y, Dong H, Chen H, Shen X, Li H, Wen Q, Wang F, Qi Y, Shen J. PoSnf1 affects cellulose utilization through interaction with cellobiose transporter in Pleurotus ostreatus. Int J Biol Macromol 2024; 275:133503. [PMID: 38944091 DOI: 10.1016/j.ijbiomac.2024.133503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pleurotus ostreatus is one of the most cultivated edible fungi worldwide, but its lignocellulose utilization efficiency is relatively low (<50 %), which eventually affects the biological efficiency of P. ostreatus. Improving cellulase production and activity will contribute to enhancing the lignocellulose-degrading capacity of P. ostreatus. AMP-activated/Snf1 protein kinase plays important roles in regulating carbon and energy metabolism. The Snf1 homolog (PoSnf1) in P. ostreatus was obtained and analyzed using bioinformatics. The cellulose response of PoSnf1, the effect of the phosphorylation level of PoSnf1 on the expression of cellulose degradation-related genes, the putative proteins that interact with the phosphorylated PoSnf1 (P-PoSnf1), the cellobiose transport function of two sugar transporters (STP1 and STP2), and the interactions between PoSnf1 and STP1/STP2 were studied in this research. We found that cellulose treatment improved the phosphorylation level of PoSnf1, which further affected cellulase activity and the expression of most cellulose degradation-related genes. A total of 1, 024 proteins putatively interacting with P-PoSnf1 were identified, and they were enriched mainly in the substances transport and metabolism. Most of the putative cellulose degradation-related protein-coding genes could respond to cellulose. Among the P-PoSnf1-interacting proteins, the functions of two sugar transporters (STP1 and STP2) were further studied, and the results showed that both could transport cellobiose and were indirectly regulated by P-PoSnf1, and that STP2 could directly interact with PoSnf1. The results of this study indicated that PoSnf1 plays an important role in regulating the expression of cellulose degradation genes possibly by affecting cellobiose transport.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haozhe Dong
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haolan Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiaoye Shen
- College of Food Science and Technology, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Huihui Li
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuancheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China.
| |
Collapse
|
2
|
Shangguan J, Qiao J, Liu H, Zhu L, Han X, Shi L, Zhu J, Liu R, Ren A, Zhao M. The CBS/H 2S signalling pathway regulated by the carbon repressor CreA promotes cellulose utilization in Ganoderma lucidum. Commun Biol 2024; 7:466. [PMID: 38632386 PMCID: PMC11024145 DOI: 10.1038/s42003-024-06180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Cellulose is an important abundant renewable resource on Earth, and the microbial cellulose utilization mechanism has attracted extensive attention. Recently, some signalling molecules have been found to regulate cellulose utilization and the discovery of underlying signals has recently attracted extensive attention. In this paper, we found that the hydrogen sulfide (H2S) concentration under cellulose culture condition increased to approximately 2.3-fold compared with that under glucose culture condition in Ganoderma lucidum. Further evidence shown that cellulase activities of G. lucidum were improved by 18.2-27.6% through increasing H2S concentration. Then, we observed that the carbon repressor CreA inhibited H2S biosynthesis in G. lucidum by binding to the promoter of cbs, a key gene for H2S biosynthesis, at "CTGGGG". In our study, we reported for the first time that H2S increased the cellulose utilization in G. lucidum, and analyzed the mechanism of H2S biosynthesis induced by cellulose. This study not only enriches the understanding of the microbial cellulose utilization mechanism but also provides a reference for the analysis of the physiological function of H2S signals.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jinjin Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - He Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
3
|
Yu NN, Ketya W, Park G. Intracellular Nitric Oxide and cAMP Are Involved in Cellulolytic Enzyme Production in Neurospora crassa. Int J Mol Sci 2023; 24:4503. [PMID: 36901932 PMCID: PMC10003064 DOI: 10.3390/ijms24054503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Although molecular regulation of cellulolytic enzyme production in filamentous fungi has been actively explored, the underlying signaling processes in fungal cells are still not clearly understood. In this study, the molecular signaling mechanism regulating cellulase production in Neurospora crassa was investigated. We found that the transcription and extracellular cellulolytic activity of four cellulolytic enzymes (cbh1, gh6-2, gh5-1, and gh3-4) increased in Avicel (microcrystalline cellulose) medium. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) detected by fluorescent dyes were observed in larger areas of fungal hyphae grown in Avicel medium compared to those grown in glucose medium. The transcription of the four cellulolytic enzyme genes in fungal hyphae grown in Avicel medium was significantly decreased and increased after NO was intracellularly removed and extracellularly added, respectively. Furthermore, we found that the cyclic AMP (cAMP) level in fungal cells was significantly decreased after intracellular NO removal, and the addition of cAMP could enhance cellulolytic enzyme activity. Taken together, our data suggest that the increase in intracellular NO in response to cellulose in media may have promoted the transcription of cellulolytic enzymes and participated in the elevation of intracellular cAMP, eventually leading to improved extracellular cellulolytic enzyme activity.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
4
|
Wu T, Xia J, Ge F, Qiu H, Tian L, Liu X, Liu R, Jiang A, Zhu J, Shi L, Yu H, Zhao M, Ren A. Target of Rapamycin Mediated Ornithine Decarboxylase Antizyme Modulate Intracellular Putrescine and Ganoderic Acid Content in Ganoderma lucidum. Microbiol Spectr 2022; 10:e0163322. [PMID: 36125287 PMCID: PMC9604110 DOI: 10.1128/spectrum.01633-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/02/2022] [Indexed: 12/31/2022] Open
Abstract
Putrescine (Put) has been shown to play an important regulatory role in cell growth in organisms. As the primary center regulating the homeostasis of polyamine (PA) content, ornithine decarboxylase antizyme (AZ) can regulate PA content through feedback. Nevertheless, the regulatory mechanism of Put is poorly understood in fungi. Here, our analysis showed that GlAZ had a modulate effect on intracellular Put content by interacting with ornithine decarboxylase (ODC) proteins and reducing its intracellular protein levels. In addition, GlAZ upregulated the metabolic pathway of ganoderic acid (GA) biosynthesis in Ganoderma lucidum by modulating the intracellular Put content. However, a target of rapamycin (TOR) was found to promote the accumulation of intracellular Put after the GlTOR inhibitor Rap was added exogenously, and unbiased analyses demonstrated that GlTOR may promote Put production through its inhibitory effect on the level of GlAZ protein in GlTOR-GlAZ-cosilenced strains. The effect of TOR on fungal secondary metabolism was further explored, and the content of GA in the GlTOR-silenced strain after the exogenous addition of the inhibitor Rap was significantly increased compared with that in the untreated wild-type (WT) strain. Silencing of TOR in the GlTOR-silenced strains caused an increase in GA content, which returned to the WT state after replenishing Put. Moreover, the content of GA in GlTOR-GlAZ-cosilenced strains was also not different from that in the WT strain. Consequently, these results strongly indicate that GlTOR affects G. lucidum GA biosynthesis via GlAZ. IMPORTANCE Research on antizyme (AZ) in fungi has focused on the mechanism by which AZ inhibits ornithine decarboxylase (ODC). Moreover, there are existing reports on the regulation of AZ protein translation by TOR. However, little is known about the mechanisms that influence AZ in fungal secondary metabolism. Here, both intracellular Put content and GA biosynthesis in G. lucidum were shown to be regulated through protein interactions between GlAZ and GlODC. Furthermore, exploration of upstream regulators of GlAZ suggested that GlAZ was regulated by the upstream protein GlTOR, which affected intracellular Put levels and ganoderic acid (GA) biosynthesis. The results of our work contribute to the understanding of the upstream regulation of Put and provide new insights into PA regulatory systems and secondary metabolism in fungi.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Hainan, People’s Republic of China
| | - Jiale Xia
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Feng Ge
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Hao Qiu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Li Tian
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Xiaotian Liu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Rui Liu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Ailiang Jiang
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Jing Zhu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Liang Shi
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Hanshou Yu
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Mingwen Zhao
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
| | - Ang Ren
- Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, People’s Republic of China
- Sanya Institute of Nanjing Agricultural University, Hainan, People’s Republic of China
- Institute of Biology, Guizhou Academy of Sciences, Guizhou, People’s Republic of China
| |
Collapse
|
5
|
Functional Roles of LaeA-like Genes in Fungal Growth, Cellulase Activity, and Secondary Metabolism in Pleurotus ostreatus. J Fungi (Basel) 2022; 8:jof8090902. [PMID: 36135627 PMCID: PMC9502681 DOI: 10.3390/jof8090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The global regulator LaeA plays crucial roles in morphological development and secondary metabolite biosynthesis in filamentous fungi. However, the functions of LaeA in basidiomycetes are less reported. The basidiomycete Pleurotus ostreatus is a well-known fungus used both in medicine and as food that produces polysaccharides and cellulolytic enzymes. In this study, we characterized three LaeA homologs (PoLaeA1, PoLaeA2, and PoLaeA3) in P. ostreatus. PoLaeA1 showed different expression patterns than PoLaeA2 and PoLaeA3 during different developmental stages. Silencing PoLaeA1 decreased the intracellular polysaccharide (IPS) content by approximately 28–30% and reduced intracellular ROS levels compared with those of the WT strain. However, silencing PoLaeA2 and PoLaeA3 decreased cellulase activity by 31–34% and 35–40%, respectively, and reduced the cytosolic Ca2+ content, compared with those of the WT strain. Further analysis showed that PoLaeA1 regulated IPS biosynthesis through intracellular ROS levels, whereas PoLaeA2 and PoLaeA3 regulated cellulase activity through intracellular Ca2+ signaling. Our results provide new insights into the regulation of polysaccharide biosynthesis and cellulase production in filamentous fungi.
Collapse
|
6
|
Meng L, Zhou R, Lin J, Zang X, Wang Q, Wang P, Wang L, Li Z, Wang W. Transcriptome and metabolome analyses reveal transcription factors regulating ganoderic acid biosynthesis in Ganoderma lucidum development. Front Microbiol 2022; 13:956421. [PMID: 35992655 PMCID: PMC9386254 DOI: 10.3389/fmicb.2022.956421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Ganoderma lucidum is an important medicinal fungus in Asian countries. Ganoderic acid (GA) is the major variety of bioactive and medicative components in G. lucidum. Biosynthesis of secondary metabolites is usually associated with cell differentiation and development. However, the mechanism underlying these phenomena remain unclear. Transcription factors play an essential regulatory role in the signal transduction pathway, owing to the fact that they represent the major link between signal transduction and expression of target genes. In the present study, we performed transcriptome and metabolome analyses to identify transcription factors involved in GA biosynthesis during development of G. lucidum. Transcriptome data revealed differentially expressed genes between mycelia and primordia, as well as between mycelia and the fruiting body. Results from gene ontology enrichment analysis and metabolome analyses suggested that GAs and flavonoids biosynthetic process significantly changed during fungal development. The analysis of predicted occurrences of DNA-binding domains revealed a set of 53 potential transcription factor families in G. lucidum. Notably, we found homeobox transcription factor and velvet family protein played important role in GA biosynthesis. Combined with previous studies, we provided a model diagram of transcription factors involved in GA biosynthesis during fruiting body formation. Collectively, these results are expected to enhance our understanding into the mechanisms underlying secondary metabolite biosynthesis and development in fungi.
Collapse
|