1
|
Singh G, Pasinato A, Yriarte ALC, Pizarro D, Divakar PK, Schmitt I, Dal Grande F. Are there conserved biosynthetic genes in lichens? Genome-wide assessment of terpene biosynthetic genes suggests ubiquitous distribution of the squalene synthase cluster. BMC Genomics 2024; 25:936. [PMID: 39375591 PMCID: PMC11457338 DOI: 10.1186/s12864-024-10806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Lichen-forming fungi (LFF) are prolific producers of functionally and structurally diverse secondary metabolites, most of which are taxonomically exclusive and play lineage-specific roles. To date, widely distributed, evolutionarily conserved biosynthetic pathways in LFF are not known. However, this idea stems from polyketide derivatives, since most biochemical research on lichens has concentrated on polyketide synthases (PKSs). Here, we present the first systematic identification and comparison of terpene biosynthetic genes of LFF using all the available Lecanoromycete reference genomes and 22 de novo sequenced ones (111 in total, representing 60 genera and 23 families). We implemented genome mining and gene networking approaches to identify and group the biosynthetic gene clusters (BGCs) into networks of similar BGCs. Our large-scale analysis led to the identification of 724 terpene BGCs with varying degrees of pairwise similarity. Most BGCs in the dataset were unique with no similarity to a previously known fungal or bacterial BGC or among each other. Remarkably, we found two BGCs that were widely distributed in LFF. Interestingly, both conserved BGCs contain the same core gene, i.e., putatively a squalene/phytoene synthase (SQS), involved in sterol biosynthesis. This indicates that early gene duplications, followed by gene losses/gains and gene rearrangement are the major evolutionary factors shaping the composition of these widely distributed SQS BGCs across LFF. We provide an in-depth overview of these BGCs, including the transmembrane, conserved, variable and LFF-specific regions. Our study revealed that lichenized fungi do have a highly conserved BGC, providing the first evidence that a biosynthetic gene may constitute essential genes in lichens.
Collapse
Affiliation(s)
- Garima Singh
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy.
- Botanical Garden of Padova, University of Padova, Padua, Italy.
| | - Anna Pasinato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
| | | | - David Pizarro
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Pradeep K Divakar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, 28040, Spain
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt Am Main, 60325, Germany
- Department of Biosciences, Institute of Ecology Evolution and Diversity, Goethe UniversityFrankfurt,, Max-Von-Laue-Str. 13, Frankfurt am Main, 60438, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt Am Main, 60325, Germany
| | - Francesco Dal Grande
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padua, Italy
- Botanical Garden of Padova, University of Padova, Padua, Italy
| |
Collapse
|
2
|
Ahmad N, Ritz M, Calchera A, Otte J, Schmitt I, Brueck T, Mehlmer N. Biosynthetic gene cluster synteny: Orthologous polyketide synthases in Hypogymnia physodes, Hypogymnia tubulosa, and Parmelia sulcata. Microbiologyopen 2023; 12:e1386. [PMID: 37877655 PMCID: PMC10582450 DOI: 10.1002/mbo3.1386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Lichens are symbiotic associations consisting of a photobiont (algae or cyanobacteria) and a mycobiont (fungus), which together generate a variety of unique secondary metabolites. To access this biosynthetic potential for biotechnological applications, deeper insights into the biosynthetic pathways and corresponding gene clusters are necessary. Here, we provide a comparative view of the biosynthetic gene clusters of three lichen mycobionts derived from Hypogymnia physodes, Hypogymnia tubulosa, and Parmelia sulcata. In addition, we present a high-quality PacBio metagenome of Parmelia sulcata, from which we extracted the mycobiont bin containing 214 biosynthetic gene clusters. Most biosynthetic gene clusters in these genomes were associated with T1PKSs, followed by NRPSs and terpenes. This study focused on biosynthetic gene clusters related to polyketide synthesis. Based on ketosynthase homology, we identified nine highly syntenic clusters present in all three species. Among the four clusters belonging to nonreducing PKSs, two are putatively linked to lichen substances derived from orsellinic acid (orcinol depsides and depsidones, e.g., lecanoric acid, physodic acid, lobaric acid), one to compounds derived from methylated forms of orsellinic acid (beta orcinol depsides, e.g., atranorin), and one to melanins. Five clusters with orthologs in all three species are linked to reducing PKSs. Our study contributes to sorting and dereplicating the vast PKS diversity found in lichenized fungi. High-quality sequences of biosynthetic gene clusters of these three common species provide a foundation for further exploration into biotechnological applications and the molecular evolution of lichen substances.
Collapse
Affiliation(s)
- Nadim Ahmad
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| | - Manfred Ritz
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F)Frankfurt am MainGermany
- Institute of Ecology, Evolution and DiversityGoethe University FrankfurtFrankfurt am MainGermany
| | - Thomas Brueck
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| | - Norbert Mehlmer
- Department of Chemistry, Werner Siemens Chair of Synthetic Biotechnology, TUM School of Natural SciencesTechnical University of Munich (TUM)GarchingGermany
| |
Collapse
|
3
|
Paguirigan JAG, Kim JA, Hur JS, Kim W. Identification of a biosynthetic gene cluster for a red pigment cristazarin produced by a lichen-forming fungus Cladonia metacorallifera. PLoS One 2023; 18:e0287559. [PMID: 37352186 PMCID: PMC10289310 DOI: 10.1371/journal.pone.0287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 06/25/2023] Open
Abstract
Lichens are known to produce many novel bioactive metabolites. To date, approximately 1,000 secondary metabolites have been discovered, which are predominantly produced by the lichen mycobionts. However, despite the extensive studies on production of lichen secondary metabolites, little is known about the responsible biosynthetic gene clusters (BGCs). Here, we identified a putative BGC that is implicated in production of a red pigment, cristazarin (a naphthazarin derivative), in Cladonia metacorallifera. Previously, cristazarin was shown to be specifically induced in growth media containing fructose as a sole carbon source. Thus, we performed transcriptome analysis of C. metacorallifera growing on different carbon sources including fructose to identify the BGC for cristazarin. Among 39 polyketide synthase (PKS) genes found in the genome of C. metacorallifera, a non-reducing PKS (coined crz7) was highly expressed in growth media containing either fructose or glucose. The borders of a cristazarin gene cluster were delimited by co-expression patterns of neighboring genes of the crz7. BGCs highly conserved to the cristazarin BGC were also found in C. borealis and C. macilenta, indicating that these related species also have metabolic potentials to produce cristazarin. Phylogenetic analysis revealed that the Crz7 is sister to fungal PKSs that biosynthesize an acetylated tetrahydoxynaphthalene as a precursor of melanin pigment. Based on the phylogenetic placement of the Crz7 and putative functions of its neighboring genes, we proposed a plausible biosynthetic route for cristazarin. In this study, we identified a lichen-specific BGC that is likely involved in the biosynthesis of a naphthazarin derivative, cristazarin, and confirmed that transcriptome profiling under inducing and non-inducing conditions is an effective strategy for linking metabolites of interest to biosynthetic genes.
Collapse
Affiliation(s)
- Jaycee Augusto Gumiran Paguirigan
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Jung A. Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Korea
| |
Collapse
|
4
|
Pichler G, Muggia L, Carniel FC, Grube M, Kranner I. How to build a lichen: from metabolite release to symbiotic interplay. THE NEW PHYTOLOGIST 2023; 238:1362-1378. [PMID: 36710517 PMCID: PMC10952756 DOI: 10.1111/nph.18780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.
Collapse
Affiliation(s)
- Gregor Pichler
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| | - Lucia Muggia
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 1034127TriesteItaly
| | | | - Martin Grube
- Institute of BiologyUniversity of GrazHolteigasse 68010GrazAustria
| | - Ilse Kranner
- Department of BotanyUniversity of InnsbruckSternwartestraße 156020InnsbruckAustria
| |
Collapse
|
5
|
Ren M, Jiang S, Wang Y, Pan X, Pan F, Wei X. Discovery and excavation of lichen bioactive natural products. Front Microbiol 2023; 14:1177123. [PMID: 37138611 PMCID: PMC10149937 DOI: 10.3389/fmicb.2023.1177123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Lichen natural products are a tremendous source of new bioactive chemical entities for drug discovery. The ability to survive in harsh conditions can be directly correlated with the production of some unique lichen metabolites. Despite the potential applications, these unique metabolites have been underutilized by pharmaceutical and agrochemical industries due to their slow growth, low biomass availability, and technical challenges involved in their artificial cultivation. At the same time, DNA sequence data have revealed that the number of encoded biosynthetic gene clusters in a lichen is much higher than in natural products, and the majority of them are silent or poorly expressed. To meet these challenges, the one strain many compounds (OSMAC) strategy, as a comprehensive and powerful tool, has been developed to stimulate the activation of silent or cryptic biosynthetic gene clusters and exploit interesting lichen compounds for industrial applications. Furthermore, the development of molecular network techniques, modern bioinformatics, and genetic tools is opening up a new opportunity for the mining, modification, and production of lichen metabolites, rather than merely using traditional separation and purification techniques to obtain small amounts of chemical compounds. Heterologous expressed lichen-derived biosynthetic gene clusters in a cultivatable host offer a promising means for a sustainable supply of specialized metabolites. In this review, we summarized the known lichen bioactive metabolites and highlighted the application of OSMAC, molecular network, and genome mining-based strategies in lichen-forming fungi for the discovery of new cryptic lichen compounds.
Collapse
Affiliation(s)
- Meirong Ren
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Shuhua Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Feng Pan
- Jiangxi Xiankelai Biotechnology Co., Ltd., Jiujiang, China
| | - Xinli Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Yuan X, Li Y, Luo T, Bi W, Yu J, Wang Y. Genomic Analysis of the Xanthoria elegans and Polyketide Synthase Gene Mining Based on the Whole Genome. MYCOBIOLOGY 2023; 51:36-48. [PMID: 36846628 PMCID: PMC9946308 DOI: 10.1080/12298093.2023.2175428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Xanthoria elegans is a lichen symbiosis, that inhabits extreme environments and can absorb UV-B. We reported the de novo sequencing and assembly of X. elegans genome. The whole genome was approximately 44.63 Mb, with a GC content of 40.69%. Genome assembly generated 207 scaffolds with an N50 length of 563,100 bp, N90 length of 122,672 bp. The genome comprised 9,581 genes, some encoded enzymes involved in the secondary metabolism such as terpene, polyketides. To further understand the UV-B absorbing and adaptability to extreme environments mechanisms of X. elegans, we searched the secondary metabolites genes and gene-cluster from the genome using genome-mining and bioinformatics analysis. The results revealed that 7 NR-PKSs, 12 HR-PKSs and 2 hybrid PKS-PKSs from X. elegans were isolated, they belong to Type I PKS (T1PKS) according to the domain architecture; phylogenetic analysis and BGCs comparison linked the putative products to two NR-PKSs and three HR-PKSs, the putative products of two NR-PKSs were emodin xanthrone (most likely parietin) and mycophelonic acid, the putative products of three HR-PKSs were soppilines, (+)-asperlin and macrolactone brefeldin A, respectively. 5 PKSs from X. elegans build a correlation between the SMs carbon skeleton and PKS genes based on the domain architecture, phylogenetic and BGC comparison. Although the function of 16 PKSs remains unclear, the findings emphasize that the genes from X. elegans represent an unexploited source of novel polyketide and utilization of lichen gene resources.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, Hubei, People’ Republic of China
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Yunqing Li
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Ting Luo
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Wei Bi
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| | - Jiaojun Yu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, Hubei, People’ Republic of China
| | - Yi Wang
- Yunnan Key Laboratory of Forest Plant Cultivation and Utilization/National Forestry and Grassland Administration Key Laboratory of Yunnan Rare and Endangered Species Conservation and Propagation, Yunnan Academy of Forestry and Grassland, Kunming, Yunnan, People’ Republic of China
| |
Collapse
|
7
|
Llewellyn T, Nowell RW, Aptroot A, Temina M, Prescott TAK, Barraclough TG, Gaya E. Metagenomics Shines Light on the Evolution of "Sunscreen" Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota). Genome Biol Evol 2023; 15:6986375. [PMID: 36634008 PMCID: PMC9907504 DOI: 10.1093/gbe/evad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Fungi produce a vast number of secondary metabolites that shape their interactions with other organisms and the environment. Characterizing the genes underpinning metabolite synthesis is therefore key to understanding fungal evolution and adaptation. Lichenized fungi represent almost one-third of Ascomycota diversity and boast impressive secondary metabolites repertoires. However, most lichen biosynthetic genes have not been linked to their metabolite products. Here we used metagenomic sequencing to survey gene families associated with production of anthraquinones, UV-protectant secondary metabolites present in various fungi, but especially abundant in a diverse order of lichens, the Teloschistales (class Lecanoromycetes, phylum Ascomycota). We successfully assembled 24 new, high-quality lichenized-fungal genomes de novo and combined them with publicly available Lecanoromycetes genomes from taxa with diverse secondary chemistry to produce a whole-genome tree. Secondary metabolite biosynthetic gene cluster (BGC) analysis showed that whilst lichen BGCs are numerous and highly dissimilar, core enzyme genes are generally conserved across taxa. This suggests metabolite diversification occurs via re-shuffling existing enzyme genes with novel accessory genes rather than BGC gains/losses or de novo gene evolution. We identified putative anthraquinone BGCs in our lichen dataset that appear homologous to anthraquinone clusters from non-lichenized fungi, suggesting these genes were present in the common ancestor of the subphylum Pezizomycotina. Finally, we identified unique transporter genes in Teloschistales anthraquinone BGCs that may explain why these metabolites are so abundant and ubiquitous in these lichens. Our results support the importance of metagenomics for understanding the secondary metabolism of non-model fungi such as lichens.
Collapse
Affiliation(s)
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Andre Aptroot
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Marina Temina
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Mount Carmel, Haifa, 3498838, Israel
| | - Thomas A K Prescott
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| |
Collapse
|
8
|
Singh G, Dal Grande F, Schmitt I. Genome mining as a biotechnological tool for the discovery of novel biosynthetic genes in lichens. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:993171. [PMID: 37746187 PMCID: PMC10512267 DOI: 10.3389/ffunb.2022.993171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 09/26/2023]
Abstract
Natural products (NPs) and their derivatives are a major contributor to modern medicine. Historically, microorganisms such as bacteria and fungi have been instrumental in generating drugs and lead compounds because of the ease of culturing and genetically manipulating them. However, the ever-increasing demand for novel drugs highlights the need to bioprospect previously unexplored taxa for their biosynthetic potential. Next-generation sequencing technologies have expanded the range of organisms that can be explored for their biosynthetic content, as these technologies can provide a glimpse of an organism's entire biosynthetic landscape, without the need for cultivation. The entirety of biosynthetic genes can be compared to the genes of known function to identify the gene clusters potentially coding for novel products. In this study, we mine the genomes of nine lichen-forming fungal species of the genus Umbilicaria for biosynthetic genes, and categorize the biosynthetic gene clusters (BGCs) as "associated product structurally known" or "associated product putatively novel". Although lichen-forming fungi have been suggested to be a rich source of NPs, it is not known how their biosynthetic diversity compares to that of bacteria and non-lichenized fungi. We found that 25%-30% of biosynthetic genes are divergent as compared to the global database of BGCs, which comprises 1,200,000 characterized biosynthetic genes from plants, bacteria, and fungi. Out of 217 BGCs, 43 were highly divergant suggesting that they potentially encode structurally and functionally novel NPs. Clusters encoding the putatively novel metabolic diversity comprise polyketide synthases (30), non-ribosomal peptide synthetases (12), and terpenes (1). Our study emphasizes the utility of genomic data in bioprospecting microorganisms for their biosynthetic potential and in advancing the industrial application of unexplored taxa. We highlight the untapped structural metabolic diversity encoded in the lichenized fungal genomes. To the best of our knowledge, this is the first investigation identifying genes coding for NPs with potentially novel properties in lichenized fungi.
Collapse
Affiliation(s)
- Garima Singh
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padova, Italy
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padova, Italy
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- Institute of Ecology, Diversity and Evolution, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|