1
|
Gayathiri E, Prakash P, Pandiaraj S, Ramasubburayan R, Gaur A, Sekar M, Viswanathan D, Govindasamy R. Investigating the ecological implications of nanomaterials: Unveiling plants' notable responses to nano-pollution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108261. [PMID: 38096734 DOI: 10.1016/j.plaphy.2023.108261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 02/15/2024]
Abstract
The rapid advancement of nanotechnology has led to unprecedented innovations; however, it is crucial to analyze its environmental impacts carefully. This review thoroughly examines the complex relationship between plants and nanomaterials, highlighting their significant impact on ecological sustainability and ecosystem well-being. This study investigated the response of plants to nano-pollution stress, revealing the complex regulation of defense-related genes and proteins, and highlighting the sophisticated defense mechanisms in nature. Phytohormones play a crucial role in the complex molecular communication network that regulates plant responses to exposure to nanomaterials. The interaction between plants and nano-pollution influences plants' complex defense strategies. This reveals the interconnectedness of systems of nature. Nevertheless, these findings have implications beyond the plant domain. The incorporation of hyperaccumulator plants into pollution mitigation strategies has the potential to create more environmentally sustainable urban landscapes and improve overall environmental resilience. By utilizing these exceptional plants, we can create a future in which cities serve as centers of both innovation and ecological balance. Further investigation is necessary to explore the long-term presence of nanoparticles in the environment, their ability to induce genetic changes in plants over multiple generations, and their overall impact on ecosystems. In conclusion, this review summarizes significant scientific discoveries with broad implications beyond the confines of laboratories. This highlights the importance of understanding the interactions between plants and nanomaterials within the wider scope of environmental health. By considering these insights, we initiated a path towards the responsible utilization of nanomaterials, environmentally friendly management of pollution, and interdisciplinary exploration. We have the responsibility to balance scientific advancement and environmental preservation to create a sustainable future that combines nature's wisdom with human innovation.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai 600042, Tamil Nadu India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem 636011, Tamil Nadu, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Arti Gaur
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara-390025, Gujarat, India
| | - Malathy Sekar
- Department of Botany, PG and Research Department of Botany Government Arts College for Men, (autonomous), Nandanam, Chennai 35, Tamilnadu, India
| | - Dhivya Viswanathan
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India
| | - Rajakumar Govindasamy
- Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamilnadu, India.
| |
Collapse
|
2
|
Pérez R, Tapia Y, Antilén M, Ruiz A, Pimentel P, Santander C, Aponte H, González F, Cornejo P. Beneficial Interactive Effects Provided by an Arbuscular Mycorrhizal Fungi and Yeast on the Growth of Oenothera picensis Established on Cu Mine Tailings. PLANTS (BASEL, SWITZERLAND) 2023; 12:4012. [PMID: 38068648 PMCID: PMC10708390 DOI: 10.3390/plants12234012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 07/03/2024]
Abstract
Phytoremediation, an environmentally friendly and sustainable approach for addressing Cu-contaminated environments, remains underutilized in mine tailings. Arbuscular mycorrhizal fungi (AMF) play a vital role in reducing Cu levels in plants through various mechanisms, including glomalin stabilization, immobilization within fungal structures, and enhancing plant tolerance to oxidative stress. Yeasts also contribute to plant growth and metal tolerance by producing phytohormones, solubilizing phosphates, generating exopolysaccharides, and facilitating AMF colonization. This study aimed to assess the impact of AMF and yeast inoculation on the growth and antioxidant response of Oenothera picensis plants growing in Cu mine tailings amended with compost. Plants were either non-inoculated (NY) or inoculated with Meyerozyma guilliermondii (MG), Rhodotorula mucilaginosa (RM), or a combination of both (MIX). Plants were also inoculated with Claroideoglomus claroideum (CC), while others remained non-AMF inoculated (NM). The results indicated significantly higher shoot biomass in the MG-NM treatment, showing a 3.4-fold increase compared to the NY-NM treatment. The MG-CC treatment exhibited the most substantial increase in root biomass, reaching 5-fold that in the NY-NM treatment. Co-inoculation of AMF and yeast influenced antioxidant activity, particularly catalase and ascorbate peroxidase. Furthermore, AMF and yeast inoculation individually led to a 2-fold decrease in total phenols in the roots. Yeast inoculation notably reduced non-enzymatic antioxidant activity in the ABTS and CUPRAC assays. Both AMF and yeast inoculation promoted the production of photosynthetic pigments, further emphasizing their importance in phytoremediation programs for mine tailings.
Collapse
Affiliation(s)
- Rodrigo Pérez
- Plant Stress Physiology Laboratory, Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile; (R.P.); (P.P.)
| | - Yasna Tapia
- Departamento de Ingeniería y Suelos, Universidad de Chile, Santiago 8820808, Chile;
| | - Mónica Antilén
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile; (A.R.); (C.S.)
| | - Paula Pimentel
- Plant Stress Physiology Laboratory, Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile; (R.P.); (P.P.)
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile; (A.R.); (C.S.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile
| | - Humberto Aponte
- Laboratory of Soil Microbiology and Biogeochemistry, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile;
- Centre of Systems Biology for Crop Protection (BioSav), Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile
| | - Felipe González
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco S/N, La Palma, Quillota 2260000, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| |
Collapse
|
3
|
Wu J, Luo J, Wang Y, Peng Y, Yang G, Zhu J. Arbuscular mycorrhiza augments aluminum tolerance in white clover ( Trifoliumrepens L.) by strengthening the ascorbate-glutathione cycle and phosphorus acquisition. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1647-1661. [PMID: 38162922 PMCID: PMC10754793 DOI: 10.1007/s12298-023-01369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 01/03/2024]
Abstract
The ascorbate-glutathione (AsA-GSH) cycle is essential for detoxifying reactive oxygen species (ROS) under environmental stresses. The toxicity of aluminum (Al) limits the growth and performance of cultivated plants in acidic soil. However, there is limited information available on the relationship between arbuscular mycorrhizal symbiosis and the AsA-GSH cycle in host plants under Al stress. This study aimed to examine the impact of arbuscular mycorrhizal fungi (AMF), specifically Funneliformis mosseae, on the growth, antioxidant enzymes, components of the AsA-GSH cycle, and stress response gene expressions in white clover (Trifolium repens L.) under Al stress. Our findings demonstrate that AMF inoculation significantly reduced Al accumulation and increased phosphorus (P) content in the roots of white clover, thereby promoting plant biomass accumulation and mycorrhizal colonization under Al stress. AMF effectively scavenged Al-induced ROS (H2O2 and O2-) by enhancing the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as the components of the AsA-GSH cycle (e.g., enzymes and antioxidants) in the leaves and roots of white clover plants. Additionally, the mitigating effect of AMF was associated with the upregulation of genes involved in P transport (PHO1-2 and PHT1-7), the AsA-GSH pathway (GST-2 and APX-2), and Al stress (ALMT1) in white clover roots compared to control plants. Principal component analysis revealed that 65.9% of the total variance was explained by the first principal component. Dry mass showed a positive correlation with POD and P content, while exhibiting a highly negative correlation with ROS, antioxidant physiology index, Al content, and the expression of related genes in white clover. Overall, this study suggests that AMF enhances the tolerance of white clover to Al stress by improving P uptake and strengthening the AsA-GSH cycle. Graphical Abstract
Collapse
Affiliation(s)
- Juyang Wu
- School of Horticulture and Forestry, Hubei University for Nationalities, Enshi, 445000 China
- Key Laboratory of Biological Resources Conservation and Utilization of Hubei Province, Enshi, 445000 China
| | - Jie Luo
- School of Yuanpei, Shaoxing University, Shaoxing, 312000 China
| | - Yibing Wang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000 China
| | - Yulun Peng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000 China
| | - Guo Yang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000 China
| | - Jiang Zhu
- School of Horticulture and Forestry, Hubei University for Nationalities, Enshi, 445000 China
- Key Laboratory of Biological Resources Conservation and Utilization of Hubei Province, Enshi, 445000 China
| |
Collapse
|
4
|
Pan G, Wang W, Li X, Pan D, Liu W. Revealing the effects and mechanisms of arbuscular mycorrhizal fungi on manganese uptake and detoxification in Rhus chinensis. CHEMOSPHERE 2023; 339:139768. [PMID: 37567258 DOI: 10.1016/j.chemosphere.2023.139768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can alleviate heavy metal phytotoxicity and promote plant growth, while the underlying mechanisms of AMF symbiosis with host plants under manganese (Mn) stress remain elusive. A pot experiment was carried out to investigate the plant growth, micro-structure, Mn accumulation, subcellular distribution, chemical forms, and physiological and biochemical response of Rhus chinensis inoculated with Funneliformis mosseae (FM) under different Mn treatments. The results showed that compared with plants without FM, FM-associated plants exhibited higher growth status, photosynthetic pigments, and photosynthesis under Mn stress. FM-associated plants were able to maintain greater integrity in mesophyll structure, higher thickness of leaf, upper epidermis, and lower epidermis under Mn treatment, and promote leaf growth. Mn accumulation in leaves (258.67-2230.50 mg kg-1), stems (132.67-1160.00 mg kg-1), and roots (360.92-2446.04 mg kg-1) of the seedlings inoculated with FM was higher than non-inoculated ones. FM-associated plants exhibited higher osmotic regulating substances and antioxidant enzymes' activities under Mn exposure, suggesting lower Mn toxicity in FM inoculated seedlings, despite the augment in Mn accumulation. After FM inoculation, Mn concentration (151.04-1211.32 mg kg-1) and percentage (64.41-78.55%) enhanced in the cell wall, whilst the transport of Mn to aerial plant organs decreased. Furthermore, FM symbiosis favored the conversion of Mn from high toxic forms (2.17-15.68% in FEthanol, 11.37-24.52% in Fdeionized water) to inactive forms (28.30-38.15% in FNaCl, 18.07-28.59% in FHAc, 4.41-17.99% in FHCl) with low phytotoxicity. Our study offers a theoretical basis for remediation of the FM- R. chinensis symbiotic system in Mn-contaminated environments.
Collapse
Affiliation(s)
- Gao Pan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Wumin Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xinhang Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Deng Pan
- Central South Academy of Inventory and Planning of NFGA, Changsha, 410014, PR China.
| | - Wensheng Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| |
Collapse
|
5
|
Qin Y, Cai Q, Ling Y, Chen X, Xu J, Huang G, Liang S, Yuan X, Yang XM, Lu D, Wang X, Wei Y. Arbuscular mycorrhizal fungi improve selenium uptake by modulating root transcriptome of rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1242463. [PMID: 37799552 PMCID: PMC10547891 DOI: 10.3389/fpls.2023.1242463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
Although selenium (Se) is an essential trace element in humans, the intake of Se from food is still generally inadequate throughout the world. Inoculation with arbuscular mycorrhizal fungi (AMF) improves the uptake of Se in rice (Oryza sativa L.). However, the mechanism by which AMF improves the uptake of Se in rice at the transcriptome level is unknown. Only a few studies have evaluated the effects of uptake of other elements in rice under the combined effects of Se and AMF. In this study, Se combined with the AMF Funneliformis mosseae (Fm) increased the biomass and Se concentration of rice plants, altered the pattern of ionomics of the rice roots and shoots, and reduced the antagonistic uptake of Se with nickel, molybdenum, phosphorus, and copper compared with the treatment of Se alone, indicating that Fm can enhance the effect of fertilizers rich in Se. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the hub genes in modules significantly associated with the genes that contained Se and were related to protein phosphorylation, protein serine/threonine kinase activity, membrane translocation, and metal ion binding, suggesting that the uptake of Se by the rice roots may be associated with these genes when Fm and Se act in concert. This study provides a reference for the further exploration of genes related to Se uptake in rice under Fm treatment.
Collapse
Affiliation(s)
- Yan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Qiuliang Cai
- Industrial College of Subtropical Characteristic Agriculture, Agriculture and Food Engineering College, Baise University, Baise, China
| | - Yiting Ling
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xue Chen
- Guangxi Eco-engineering Vocational & Technical College, Liuzhou, China
| | - Jingmao Xu
- Liuzhou Railway Vocational Technical College, Liuzhou, China
| | - Guirong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Shanhe Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xiu Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao Mu Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Dan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Xueli Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Yanyan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agri–bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Mao H, Zhao W, Yang X, Sheng L, Zhu S. Recruitment and metabolomics between Canna indica and rhizosphere bacteria under Cr stress. Front Microbiol 2023; 14:1187982. [PMID: 37655347 PMCID: PMC10465350 DOI: 10.3389/fmicb.2023.1187982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
It is of positive significance to explore the mechanism of antioxidant and metabolic response of Canna indica under Cr stress mediated by rhizosphere niche. However, the mechanisms of recruitment and interaction of rhizosphere microorganisms in plants still need to be fully understood. This study combined physiology, microbiology, and metabolomics, revealing the interaction between C. indica and rhizosphere microorganisms under Cr stress. The results showed that Cr stress increased the content of malondialdehyde (MDA) and oxygen-free radicals (ROS) in plants. At the same time, the activities of antioxidant enzymes (SOD, POD, and APX) and the contents of glutathione (GSH) and soluble sugar were increased. In addition, Cr stress decreased the α diversity index of C. indica rhizosphere bacterial community and changed its community structure. The dominant bacteria, namely, Actinobacteriota, Proteobacteria, and Chloroflexi accounted for 75.16% of the total sequence. At the same time, with the extension of stress time, the colonization amount of rhizosphere-dominant bacteria increased significantly, and the metabolites secreted by roots were associated with the formation characteristics of Proteobacteria, Actinobacteria, Bacteroidetes, and other specific bacteria. Five critical metabolic pathways were identified by metabolome analysis, involving 79 differentially expressed metabolites, which were divided into 15 categories, mainly including lipids, terpenoids, and flavonoids. In conclusion, this study revealed the recruitment and interaction response mechanism between C. indica and rhizosphere bacteria under Cr stress through multi-omics methods, providing the theoretical basis for the remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | - Sixi Zhu
- The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|
7
|
Zhou HY, Nian FZ, Chen BD, Zhu YG, Yue XR, Zhang NM, Xia YS. Synergistic Reduction of Arsenic Uptake and Alleviation of Leaf Arsenic Toxicity in Maize ( Zea mays L.) by Arbuscular Mycorrhizal Fungi (AMF) and Exogenous Iron through Antioxidant Activity. J Fungi (Basel) 2023; 9:677. [PMID: 37367613 DOI: 10.3390/jof9060677] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) play key roles in enhancing plant tolerance to heavy metals, and iron (Fe) compounds can reduce the bioavailability of arsenic (As) in soil, thereby alleviating As toxicity. However, there have been limited studies of the synergistic antioxidant mechanisms of AMF (Funneliformis mosseae) and Fe compounds in the alleviation of As toxicity on leaves of maize (Zea mays L.) with low and moderate As contamination. In this study, a pot experiment was conducted with different concentrations of As (0, 25, 50 mgꞏkg-1) and Fe (0, 50 mgꞏkg-1) and AMF treatments. Results showed that under low and moderate As concentrations (As25 and As50), the co-inoculation of AMF and Fe compound significantly increased the biomass of maize stems and roots, phosphorus (P) concentration, and P-to-As uptake ratio. Moreover, the co-inoculation of AMF and Fe compound addition significantly reduced the As concentration in stem and root, malondialdehyde (MDA) content in leaf, and soluble protein and non-protein thiol (NPT) contents in leaf of maize under As25 and As50 treatments. In addition, co-inoculation with AMF and Fe compound addition significantly increased the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in the leaves of maize under As25 treatment. Correlation analysis showed that stem biomass and leaf MDA content were very significantly negatively correlated with stem As content, respectively. In conclusion, the results indicated that the co-inoculation of AMF and Fe compound addition can inhibit As uptake and promote P uptake by maize under low and moderate As contamination, thereby mitigating the lipid peroxidation on maize leaves and reducing As toxicity by enhancing the activities of antioxidant enzymes under low As contamination. These findings provide a theoretical basis for the application of AMF and Fe compounds in the restoration of cropland soil contaminated with low and moderate As.
Collapse
Affiliation(s)
- Hong-Yin Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Fu-Zhao Nian
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China
| | - Bao-Dong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-Rong Yue
- College of Marxism, Yunnan Agricultural University, Kunming 650201, China
| | - Nai-Ming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yun-Sheng Xia
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Li W, Chen K, Li Q, Tang Y, Jiang Y, Su Y. Effects of Arbuscular Mycorrhizal Fungi on Alleviating Cadmium Stress in Medicago truncatula Gaertn. PLANTS (BASEL, SWITZERLAND) 2023; 12:547. [PMID: 36771633 PMCID: PMC9920379 DOI: 10.3390/plants12030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination is a global problem for ecosystems and human health. Remediation of contaminated soils has received much attention in the last decade. Aided mitigation of heavy metal phytotoxicity by arbuscular mycorrhizal fungi (AMF) is a cost-effective and environmentally friendly strategy. This study was carried out to investigate the mitigation effect of AMF inoculation on heavy metal toxicity in Medicago truncatula under soil cadmium stress. Therefore, a pot experiment was designed to evaluate the growth, chlorophyll fluorescence, Cd uptake and distribution, malondialdehyde (MDA) content, root soil physicochemical properties, and metabolite profile analysis of M. truncatula with/without AMF inoculation in Cd (20 mg/Kg)-contaminated soil. The results showed that inoculating AMF under Cd stress might enhance photosynthetic efficiency, increase plant biomass, decrease Cd and MDA content, and improve soil physicochemical properties in M. truncatula. Non-targeted metabolite analysis revealed that inoculation with AMF under Cd stress significantly upregulated the production of various amino acids in inter-root metabolism and increase organic acid and phytohormone synthesis. This study provides information on the physiological responses of mycorrhizal plants to heavy metal stress, which could help provide deeper insight into the mechanisms of heavy metal remediation by AMF.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yuying Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu Su
- Sichuan Academy of Forestry, Chengdu 610036, China
| |
Collapse
|