1
|
He J, Qu H, Yu Y, Huang J. Characterization and phylogenetic analysis of the Talaromyces liani (kamyschko) Yilmaz, Frisvad & Samson, 2014 (Eurotiales: trichocomaceae) mitochondrial genome. Mitochondrial DNA B Resour 2024; 9:1201-1206. [PMID: 39286475 PMCID: PMC11404368 DOI: 10.1080/23802359.2024.2403409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
The filamentous fungus Talaromyces liani (Kamyschko) Yilmaz, Frisvad & Samson, 2014, has attracted considerable interest in biotechnology due to its diverse industrial applications and physiological characteristics. However, the mitochondrial genome of T. liani remains uncharacterized. Here, we present the complete mitochondrial genome of T. liani, comprising 38,000 bp with a GC content of 24.61%. This genome includes 15 core protein-coding genes, 4 independent ORFs, 6 intronic ORFs, 26 tRNAs, and 2 rRNA genes. Phylogenetic analysis using Bayesian inference (BI) revealed the evolutionary relationships among 15 fungi from Eurotiales, strongly supporting distinct clades and indicating that T. liani most closely related to T. pinophilus.
Collapse
Affiliation(s)
- Jing He
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, Sichuan, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Huijuan Qu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Youqiao Yu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang W, Wang J, Song F, Jia R, Wang L, Xu X, Yang N. New Secondary Metabolites from Marine-Derived Fungus Talaromyces minnesotensis BTBU20220184. Mar Drugs 2024; 22:237. [PMID: 38921548 PMCID: PMC11204780 DOI: 10.3390/md22060237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Six new compounds, talamitones A and B (1 and 2), demethyltalamitone B (3), talamiisocoumaringlycosides A and B (4 and 5), and talaminaphtholglycoside (6), together with six known compounds (7-12), were isolated from the marine-derived fungus Talaromyces minnesotensis BTBU20220184. The new structures were characterized by using HRESIMS and NMR. This is the first report of isocoumaringlycoside derivatives from a fungus of the Talaromyces genus. Compounds 5, 6, and 9 showed synergistic antibacterial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Weiliang Wang
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, School of Ocean Sciences, China University of Geosciences, Beijing 100083, China; (W.W.); (J.W.)
| | - Jingjing Wang
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, School of Ocean Sciences, China University of Geosciences, Beijing 100083, China; (W.W.); (J.W.)
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Renming Jia
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China;
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xiuli Xu
- Key Laboratory of Marine Mineral Resources and Polar Geology, Ministry of Education, School of Ocean Sciences, China University of Geosciences, Beijing 100083, China; (W.W.); (J.W.)
| | - Na Yang
- CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Song H, Ding YJ, Zhuang WY, Ding GZ, Wang XC. Three New Species of Penicillium from East and Northeast China. J Fungi (Basel) 2024; 10:342. [PMID: 38786697 PMCID: PMC11122177 DOI: 10.3390/jof10050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Penicillium species are ubiquitous in the environment and are of substantial importance, especially in industrial and medical aspects. During our investigation of the biodiversity of Penicillium, three new species were discovered in soil samples collected from East and Northeast China. They were determined as new to science based on morphological comparisons and phylogenetic analyses, and were found to belong to the subgenus Penicillium section Robsamsonia and subgenus Aspergilloides sections Aspergilloides and Citrina. Descriptions and illustrations of these species are provided, and their geographic distributions are also discussed.
Collapse
Affiliation(s)
- He Song
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China;
| | - Yi-Jing Ding
- College of Life Science, Capital Normal University, Beijing 100048, China;
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Guang-Zhou Ding
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China;
| | - Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
4
|
Visagie C, Yilmaz N, Kocsubé S, Frisvad J, Hubka V, Samson R, Houbraken J. A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Stud Mycol 2024; 107:1-66. [PMID: 38600958 PMCID: PMC11003441 DOI: 10.3114/sim.2024.107.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/13/2023] [Indexed: 04/12/2024] Open
Abstract
The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales. Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken. Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1-66. doi: 10.3114/sim.2024.107.01.
Collapse
Affiliation(s)
- C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S. Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- ELKH-SZTE Pathomechanisms of Fungal Infections Research Group, University of Szeged, 6726 Szeged, Hungary
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Søltofts Plads, Building 221, Technical University of Denmark, Lyngby, DK-2800 Kgs, Denmark
| | - V. Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - R.A. Samson
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
5
|
Zhou H, Xu L, Liu W, Ta K, Wang X, Guo J, Luo W, Peng Z, Huang Q, Wang Y. Talaromyces sedimenticola sp. nov., isolated from the Mariana Trench. Antonie Van Leeuwenhoek 2024; 117:44. [PMID: 38413433 DOI: 10.1007/s10482-024-01945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Two fungal strains (K-2T and S1) were isolated from the deepest ocean sediment of the Challenger Deep located in the Mariana Trench. The internal transcribed spacer (ITS) gene sequences of the isolates K-2T and S1 differed from those of closely related species, such as Talaromyces assiutensis and T. trachyspermus. Phylogenetic analyses based on single and concatenated alignments of the genes, namely ITS, β-tubulin (benA), calmodulin (cam), and the second-largest subunit fragment of the RNA polymerase II (rpb2) showed that the isolates K-2T and S1 were clustered together with other Talaromyces species, such as T. trachyspermus and T. assiutensis, as evidenced by the position on a terminal branch with high bootstrap support. They could also be distinguished from their closest relatives with valid published names via morphological and physiological characteristics, for example, growth at 4 °C-50 °C with a pH in the range of 1.5-12. Based on their phylogenetic, morphological, and physicochemical properties, the isolates K-2T and S1 represent a novel species in the genus Talaromyces, and the proposed name is Talaromyces sedimenticola sp. nov. The type strain is K-2T (= GDMCC 3.746T = JCM 39451T).
Collapse
Affiliation(s)
- Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liting Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wenxian Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Kaiwen Ta
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, Hainan, China
| | - Xincun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwei Guo
- College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China
| | - Wenxi Luo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Zhiyuan Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Qiaoni Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
6
|
Yang H, Cui S, Wei Y, Li H, Hu J, Yang K, Wu Y, Zhao Z, Li J, Wang Y, Yang H. Antagonistic effects of Talaromyces muroii TM28 against Fusarium crown rot of wheat caused by Fusarium pseudograminearum. Front Microbiol 2024; 14:1292885. [PMID: 38235437 PMCID: PMC10791928 DOI: 10.3389/fmicb.2023.1292885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Fusarium crown rot (FCR) caused by Fusarium pseudograminearum is a serious threat to wheat production worldwide. This study aimed to assess the effects of Talaromyces muroii strain TM28 isolated from root of Panax quinquefolius against F. pseudograminearum. The strain of TM28 inhibited mycelial growth of F. pseudograminearum by 87.8% at 72 h, its cell free fermentation filtrate had a strong antagonistic effect on mycelial growth and conidial germination of F. pseudograminearum by destroying the integrity of the cell membrane. In the greenhouse, TM28 significantly increased wheat fresh weight and height in the presence of pathogen Fp, it enhanced the antioxidant defense activity and ameliorated the negative effects of F. pseudograminearum, including disease severity and pathogen abundance in the rhizosphere soil, root and stem base of wheat. RNA-seq of F. pseudograminearum under TM28 antagonistic revealed 2,823 differentially expressed genes (DEGs). Most DEGs related to cell wall and cell membrane synthesis were significantly downregulated, the culture filtrate of TM28 affected the pathways of fatty acid synthesis, steroid synthesis, glycolysis, and the citrate acid cycle. T. muroii TM28 appears to have significant potential in controlling wheat Fusarium crown rot caused by F. pseudograminearum.
Collapse
Affiliation(s)
| | | | - Yanli Wei
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | | | | | | | | - Jishun Li
- Ecology Institute of Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | | | | |
Collapse
|
7
|
Wang XC, Zhang ZK, Zhuang WY. Species Diversity of Penicillium in Southwest China with Discovery of Forty-Three New Species. J Fungi (Basel) 2023; 9:1150. [PMID: 38132751 PMCID: PMC10744262 DOI: 10.3390/jof9121150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Penicillium species are ubiquitous in all kinds of environments, and they are of industrial, agricultural and clinical importance. In this study, soil fungal diversity in Southwestern China was investigated, and that of Penicillium turned out to be unexpectedly high. The survey included a total of 179 cultures of the genus isolated from 33 soil samples. Three-locus phylogenetic analyses and morphological comparisons were carried out. The examinations revealed that they belonged to two subgenera (Aspergilloides and Penicillium), 11 sections (Aspergilloides, Canescentia, Citrina, Exilicaulis, Fasciculata, Gracilenta, Lanata-Divaricata, Penicillium, Ramosum, Robsamsonia, and Sclerotiorum), 25 series, and 74 species. Forty-three species were discovered as new to science, and a new series, Simianshanica, was established in sect. Aspergilloides. Additionally, 11 species were recorded for the first time in China. Species isolation frequency and distribution of the group were also discussed.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Zhi-Kang Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
8
|
Nguyen TTT, Lee HB. A New Species and Five New Records of Talaromyces ( Eurotiales, Aspergillaceae) Belonging to Section Talaromyces in Korea. MYCOBIOLOGY 2023; 51:320-332. [PMID: 37929009 PMCID: PMC10621255 DOI: 10.1080/12298093.2023.2265645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Talaromyces is a genus within the phylum Ascomycota (class Eurotiomycetes, order Eurotiales, family Trichocomaceae). Many species in this genus are known to produce diverse secondary metabolites with great potential for agricultural, medical, and pharmaceutical applications. During a survey on fungal diversity in the genus Talaromyces in Korea, six strains were isolated from soil, indoor air, and freshwater environments. Based on morphological, physiological, and multi-locus (ITS, BenA, CaM, and RPB2) phylogenetic analyses, we identified five previously unrecorded species in Korea (T. brevis, T. fusiformis, T. muroii, T. ruber, and T. soli) and a new species (T. echinulatus sp. nov.) belonging to section Talaromyces. Herein, detailed descriptions, illustrations, and phylogenetic tree are provided.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
9
|
Zang W, Li M, Sun J, Gao C, Wang L. Two New Species of Talaromyces Sect. Trachyspermi Discovered in China. Mycopathologia 2023; 188:793-804. [PMID: 37698735 DOI: 10.1007/s11046-023-00784-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023]
Abstract
Two new species of sect. Trachyspermi isolated from soil are proposed, namely, T. albidus (ex-type AS3.26143T) and T. rubidus (ex-type AS3.26142T), based on the integrated taxonomic methods. Morphologically, T. albidus is characterized by slow growth, white gymnothecia, singly-borne asci and ellipsoidal echinulate ascospores. Talaromyces rubidus is distinguished by restricted growth, moderate to abundant red soluble pigment on CYA and YES, biverticillate penicilli, and commonly ovoid to globose echinulate conidia. The two proposed novelties are further confirmed by the phylogenetic analyses of the concatenated BenA-CaM-Rpb2-ITS sequence matrix and the individual BenA, CaM, Rpb2 and ITS sequence matrices. Talaromyces albidus is closely related to T. assiutensis and T. trachyspermus, while T. rubidus is in the clade containing T. albobiverticillius, T. rubrifaciens, T. catalonicus, T. heiheensis, T. erythromellis, T. halophytorum, T. pernambucoensis, T. solicola and T. aerius.
Collapse
Affiliation(s)
- Wei Zang
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Mi Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Jianqiu Sun
- School of Life and Environmental Science, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Liu C, Wang XC, Yu ZH, Zhuang WY, Zeng ZQ. Seven New Species of Eurotiales (Ascomycota) Isolated from Tidal Flat Sediments in China. J Fungi (Basel) 2023; 9:960. [PMID: 37888216 PMCID: PMC10607332 DOI: 10.3390/jof9100960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023] Open
Abstract
Tidal flats have been reported to contain many microorganisms and play a critical role in maintaining biodiversity. In surveys of filamentous fungi from tidal flat sediments in China, seven new species of Eurotiales were discovered and described. Morphological characteristics and DNA sequence analyses of combined datasets of the BenA, CaM, and RPB2 regions support their placements and recognition as new species. Aspergillus liaoningensis sp. nov. and A. plumeriae sp. nov. belong to sections Candidi and Flavipedes of subgenus Circumdati, and A. subinflatus sp. nov. is a member of section Cremei of subgenus Cremei. Penicillium danzhouense sp. nov., P. tenue sp. nov., and P. zhanjiangense sp. nov. are attributed to sections Exilicaulis and Lanata-Divaricata of subgenus Aspergilloides. Talaromyces virens sp. nov. is in section Talaromyces. Detailed descriptions and illustrations of these novel taxa are provided. Their differences from close relatives were compared and discussed.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
| | - Zhi-He Yu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China;
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
| | - Zhao-Qing Zeng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (C.L.); (X.-C.W.); (W.-Y.Z.)
| |
Collapse
|
11
|
Alves V, Lira R, Lima J, Barbosa R, Bento D, Barbier E, Bernard E, Souza-Motta C, Bezerra J. Unravelling the fungal darkness in a tropical cave: richness and the description of one new genus and six new species. Fungal Syst Evol 2022; 10:139-167. [PMID: 36741552 PMCID: PMC9875697 DOI: 10.3114/fuse.2022.10.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Caves are special environments that harbour an incredible diversity of life, including fungal species. Brazilian caves have been demonstrated to be biodiversity hotspots for known and unknown fungal species. We investigated the richness of culturable fungi in a tropical cave in Brazil by isolating these microorganisms from the sediment and air. The fungal abundance of colony-forming units (CFUs) was 3 178 in sediment and 526 in air. We used morphological features and phylogenetic analyses of actin (actA), calmodulin (cmdA), internal transcribed spacer regions and intervening 5.8S rRNA (ITS), large subunit (LSU) rDNA, RNA polymerase II second largest subunit (rpb2), translation elongation factor 1-alpha (tef1), and β-tubulin (tub2) genes to identify these isolates. Forty-one species belonging to 17 genera of Ascomycota and two of Basidiomycota were identified, and the genus Aspergillus was most commonly observed in the cave (13 taxa). Twenty-four species were found in sediment (16 exclusives) and 25 species were found in air (17 exclusives). In this study, we introduced a new genus (Pseudolecanicillium gen. nov.) in the family Cordycipitaceae and six new species (14 % of the total taxa identified) of fungal isolates obtained from sediment and air: Aspergillus lebretii sp. nov., Malbranchea cavernosa sp. nov., Pseudohumicola cecavii sp. nov., Pseudolecanicillium caatingaense sp. nov., Talaromyces cavernicola sp. nov., and Tritirachium brasiliense sp. nov. In addition, we built a checklist of the fungal taxa reported from Brazilian caves. Our results highlight the contribution of Brazilian caves to the estimation of national and global fungal diversity. Citation: Alves VCS, Lira RA, Lima JMS, Barbosa RN, Bento DM, Barbier E, Bernard E, Souza-Motta CM, Bezerra JDP (2022). Unravelling the fungal darkness in a tropical cave: richness and the description of one new genus and six new species. Fungal Systematics and Evolution 10: 139-167. doi: 10.3114/fuse.2022.10.06.
Collapse
Affiliation(s)
- V.C.S. Alves
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - R.A. Lira
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - J.M.S. Lima
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - R.N. Barbosa
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - D.M. Bento
- Centro Nacional de Pesquisa e Conservação de Cavernas, Base Avançada no Rio Grande do Norte, Instituto Chico Mendes de Conservação da Biodiversidade, CEP: 59015-350, Natal, RN, Brazil
| | - E. Barbier
- Laboratório de Ciência Aplicada à Conservação da Biodiversidade, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - E. Bernard
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - C.M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Avenida da Engenharia, s/n, Cidade Universitária, CEP: 50740-600, Recife, PE, Brazil
| | - J.D.P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil
| |
Collapse
|
12
|
Guerra Sierra BE, Arteaga-Figueroa LA, Sierra-Pelaéz S, Alvarez JC. Talaromyces santanderensis: A New Cadmium-Tolerant Fungus from Cacao Soils in Colombia. J Fungi (Basel) 2022; 8:jof8101042. [PMID: 36294607 PMCID: PMC9605138 DOI: 10.3390/jof8101042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Inorganic pollutants in Colombian cocoa (Theobroma cacao L.) agrosystems cause problems in the production, quality, and exportation of this raw material worldwide. There has been an increased interest in bioprospecting studies of different fungal species focused on the biosorption of heavy metals. Furthermore, fungi constitute a valuable, profitable, ecological, and efficient natural soil resource that could be considered in the integrated management of cadmium mitigation. This study reports a new species of Talaromyces isolated from a cocoa soil sample collected in San Vicente de Chucurí, Colombia. T. santanderensis is featured by Lemon Yellow (R. Pl. IV) mycelium on CYA, mono-to-biverticillade conidiophores, and acerose phialides. T. santanderensis is distinguished from related species by its growth rate on CYAS and powdery textures on MEA, YES and OA, high acid production on CREA and smaller conidia. It is differentiated from T. lentulus by its growth rate on CYA medium at 37 °C without exudate production, its cream (R. PI. XVI) margin on MEA, and dense sporulation on YES and CYA. Phylogenetic analysis was performed using a polyphasic approach, including different phylogenetic analyses of combined and individual ITS, CaM, BenA, and RPB2 gene sequences that indicate that it is new to science and is named Talaromyces santanderensis sp. nov. This new species belongs to the Talaromyces section and is closely related to T. lentulus, T. soli, T. tumuli, and T. pratensis (inside the T. pinophilus species complex) in the inferred phylogeny. Mycelia growth of the fungal strains was subjected to a range of 0–400 mg/kg Cd and incorporated into malt extract agar (MEA) in triplicates. Fungal radial growth was recorded every three days over a 13-day incubation period and In vitro cadmium tolerance tests showed a high tolerance index (0.81) when the mycelium was exposed to 300 mg/kg of Cd. Results suggest that T. santanderensis showed tolerance to Cd concentrations that exceed the permissible limits for contaminated soils, and it is promising for its use in bioremediation strategies to eliminate Cd from highly contaminated agricultural soils.
Collapse
Affiliation(s)
- Beatriz E. Guerra Sierra
- Universidad de Santander–Facultad de Ciencias Exactas Naturales Y Agropecuarias, Research Group in Agro–Environmental Biotechnology and Health (MICROBIOTA), Bucaramanga 680002, Colombia
- Correspondence: (B.E.G.S.); (J.C.A.)
| | - Luis A. Arteaga-Figueroa
- Research Group in Biodiversity, Evolution and Conservation (BEC), School of Applied Sciences and Engineering, EAFIT University, Medellín 050022, Colombia
| | - Susana Sierra-Pelaéz
- Research Group in Biodiversity, Evolution and Conservation (BEC), School of Applied Sciences and Engineering, EAFIT University, Medellín 050022, Colombia
| | - Javier C. Alvarez
- Research Group in Biodiversity, Evolution and Conservation (BEC), School of Applied Sciences and Engineering, EAFIT University, Medellín 050022, Colombia
- Correspondence: (B.E.G.S.); (J.C.A.)
| |
Collapse
|