1
|
Singh V, Mandal P, Chauhan SS, Saifi IJ, Marhaba, Sandeep PV, Jagdale P, Ayanur A, Ansari KM. Chronic exposure to Zearalenone leads to endometrial hyperplasia in CD-1 mice by altering the inflammatory markers. Toxicol Res (Camb) 2024; 13:tfae055. [PMID: 38645625 PMCID: PMC11031408 DOI: 10.1093/toxres/tfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Background Zearalenone (ZEA), a natural food contaminant, is reported to act as a mycoestrogen due to its estrogen-mimicking properties. According to studies, ZEA has a greater potential for estrogenic activity compared to any other naturally occurring non-steroidal estrogen. ZEA has been found in the endometrium of individuals with reproductive problems and the serum of children facing early puberty. These studies suggested a possible link between ZEA exposure and endometrial toxicity; nonetheless, no thorough research has been done. This study assessed the endometrium's response to chronic ZEA exposure. Methods Four groups of CD-1 female mice were exposed to control, estradiol (E2), and two different doses of ZEA for 90 days. At the end of treatment, blood and uterus were collected, and samples were used for inflammatory cytokines level, immunochemical, histopathological, and biophysical analysis. Results Our data indicated that the uterus showed a change in body/organ weight ratio, while other organs did not have any notable changes. Immunochemical and histological studies showed hyperplasia and a higher number of glands in the endometrium after ZEA and E2 exposure. Similarly, proliferation markers such as proliferative cell nuclear antigen (PCNA), Ki-67, and inflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon-gamma (IFN-?) levels were found to be higher in the E2 and ZEA-exposed groups. Conclusion Our finding conclude that ZEA targets the uterus and cause inflammation due to increased levels of inflammatory cytokines and proliferation mediators, as well as systemic toxicity denoted by a strong binding affinity with serum proteins.
Collapse
Affiliation(s)
- Varsha Singh
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shweta Singh Chauhan
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
- Computational Toxicology Facility, Toxicoinformatics and Industrial Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ishrat Jahan Saifi
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Marhaba
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - P V Sandeep
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pankaj Jagdale
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR) Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Galluzzo FG, Cammilleri G, Pulvirenti A, Mannino E, Pantano L, Calabrese V, Buscemi MD, Messina EMD, Alfano C, Macaluso A, Ferrantelli V. Determination of Mycotoxins in Plant-Based Meat Alternatives (PBMAs) and Ingredients after Microwave Cooking. Foods 2024; 13:339. [PMID: 38275706 PMCID: PMC10815609 DOI: 10.3390/foods13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
In this study, we investigate the role of microwave cooking in reducing mycotoxin contamination in plant-based food matrices, with a focus on veggie burgers (purchased and home-made) and their ingredients (soybean, potatoes, zucchini, carrots). Two different conditions were studied (Max-Min) that were 800 W for 60 s and 800 W for 90 s, respectively. The degradation patterns of aflatoxins (AFB1, AFB2, AFG1, AFG2), fumonisins (FB1, FB2, FB3), trichothecenes (T2, HT2, ZEA), and ochratoxin A (OTA) were studied. The extraction procedures were conducted with the QuEChERS extraction, and the analyses were conducted with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Principal component analysis (PCA) showed that degradation under microwave cooking varies considerably across different food matrices and cooking conditions. This study provides valuable insights into the degradation of mycotoxins during microwave cooking and underscores the need for more research in this area to ensure food safety.
Collapse
Affiliation(s)
- Francesco Giuseppe Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
- Dipartimento Scienze della Vita, Università Degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy;
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Andrea Pulvirenti
- Dipartimento Scienze della Vita, Università Degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy;
| | - Erika Mannino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Licia Pantano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Vittorio Calabrese
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli studi di Catania, 95123 Catania, Italy;
| | - Maria Drussilla Buscemi
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Elisa Maria Domenica Messina
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Calogero Alfano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (G.C.); (E.M.); (M.D.B.); (E.M.D.M.); (C.A.); (A.M.); (V.F.)
| |
Collapse
|
3
|
Lo EKK, Wang X, Lee PK, Wong HC, Lee JCY, Gómez-Gallego C, Zhao D, El-Nezami H, Li J. Mechanistic insights into zearalenone-accelerated colorectal cancer in mice using integrative multi-omics approaches. Comput Struct Biotechnol J 2023; 21:1785-1796. [PMID: 36915382 PMCID: PMC10006464 DOI: 10.1016/j.csbj.2023.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Zearalenone (ZEA), a secondary metabolite of Fusarium fungi found in cereal-based foods, promotes the growth of colon, breast, and prostate cancer cells in vitro. However, the lack of animal studies hinders a deeper mechanistic understanding of the cancer-promoting effects of ZEA. This study aimed to determine the effect of ZEA on colon cancer progression and its underlying mechanisms. Through integrative analyses of transcriptomics, metabolomics, metagenomics, and host phenotypes, we investigated the impact of a 4-week ZEA intervention on colorectal cancer in xenograft mice. Our results showed a twofold increase in tumor weight with the 4-week ZEA intervention. ZEA exposure significantly increased the mRNA and protein levels of BEST4, DGKB, and Ki67 and the phosphorylation levels of ERK1/2 and AKT. Serum metabolomic analysis revealed that the levels of amino acids, including histidine, arginine, citrulline, and glycine, decreased significantly in the ZEA group. Furthermore, ZEA lowered the alpha diversity of the gut microbiota and reduced the abundance of nine genera, including Tuzzerella and Rikenella. Further association analysis indicated that Tuzzerella was negatively associated with the expression of BEST4 and DGKB genes, serum uric acid levels, and tumor weight. Additionally, circulatory hippuric acid levels positively correlated with tumor weight and the expression of oncogenic genes, including ROBO3, JAK3, and BEST4. Altogether, our results indicated that ZEA promotes colon cancer progression by enhancing the BEST4/AKT/ERK1/2 pathway, lowering circulatory amino acid concentrations, altering gut microbiota composition, and suppressing short chain fatty acids production.
Collapse
Affiliation(s)
- Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Xiuwan Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Pui-Kei Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ho-Ching Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Danyue Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China.,Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.,School of Data Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|