1
|
Bhagat N, Mansotra R, Patel K, Ambardar S, Vakhlu J. Molecular warfare between pathogenic Fusarium oxysporum R1 and host Crocus sativus L. unraveled by dual transcriptomics. PLANT CELL REPORTS 2024; 43:42. [PMID: 38246927 DOI: 10.1007/s00299-023-03101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024]
Abstract
KEY MESSAGE Phenylpropanoid biosynthesis and plant-pathogen interaction pathways in saffron and cell wall degrading enzymes in Fusarium oxysporum R1 are key players involved in the interaction. Fusarium oxysporum causes corm rot in saffron (Crocus sativus L.), which is one of the most devastating fungal diseases impacting saffron yield globally. Though the corm rot agent and its symptoms are known widely, little is known about the defense mechanism of saffron in response to Fusarium oxysporum infection at molecular level. Therefore, the current study reports saffron-Fusarium oxysporum R1 (Fox R1) interaction at the molecular level using dual a transcriptomics approach. The results indicated the activation of various defense related pathways such as the mitogen activated protein kinase pathway (MAPK), plant-hormone signaling pathways, plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway and PR protein synthesis in the host during the interaction. The activation of pathways is involved in the hypersensitive response, production of various secondary metabolites, strengthening of the host cell wall, systemic acquired resistance etc. Concurrently, in the pathogen, 60 genes reported to be linked to pathogenicity and virulence has been identified during the invasion. The expression of genes encoding plant cell wall degrading enzymes, various transcription factors and effector proteins indicated the strong pathogenicity of Fusarium oxysporum R1. Based on the results obtained, the putative molecular mechanism of the saffron-Fox R1 interaction was identified. As saffron is a male sterile plant, and can only be improved by genetic manipulation, this work will serve as a foundation for identifying genes that can be used to create saffron varieties, resistant to Fusarium oxysporum infection.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Ritika Mansotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Karan Patel
- DNA Xperts Private Limited, Noida, 201301, India
| | - Sheetal Ambardar
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, India.
| |
Collapse
|
2
|
Bhagat N, Vakhlu J. Effects of biocontrol Bacillus sp. strain D5 on the pathogenic Fusarium oxysporum R1 at the microscopic and molecular level in Crocus sativus L. (saffron) corm. FEMS MICROBES 2024; 5:xtad025. [PMID: 38250179 PMCID: PMC10799715 DOI: 10.1093/femsmc/xtad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Corm rot of saffron caused by Fusarium oxysporum is a major threat to saffron cultivation the world over. To minimize the ill effects of chemical fungicides, attention has been shifted to the use of biocontrol agents for disease management in a sustainable way. In saffron, various biocontrol agents against corm rot disease have been reported and characterized but no study has been done so far to understand their interaction at the molecular level. The present study was conducted to unravel the mechanism of action of an already characterized native biocontrol agent i.e. Bacillus sp. strain D5 (Bar D5) against F. oxsporum R1 (Fox R1) in the saffron corm. The growth inhibition of Fox R1 was observed in vitro and in planta (saffron corm) by real time imaging. Bacillus sp. strain D5 reduced Fox R1 load in infected corms by 50% as quantified by q-PCR and the colony-forming unit method. Comparative transcriptome analysis revealed upregulation and downregulation of various Fox R1 genes in presence of Bar D5. The genes related to carbon metabolism, cell wall and membrane synthesis, and growth of Fox R1 were significantly downregulated in Bar D5-primed and Fox R1-inoculated corms as compared to only Fox R1-inoculated corms.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Jyoti Vakhlu
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| |
Collapse
|
3
|
Campos MD, Varanda C, Patanita M, Amaro Ribeiro J, Campos C, Materatski P, Albuquerque A, Félix MDR. A TaqMan ® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases. BIOLOGY 2023; 12:268. [PMID: 36829545 PMCID: PMC9953614 DOI: 10.3390/biology12020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In tomato plants, Fusarium spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan® MGB (Minor Groove Binder) assay to detect and discriminate Fusarium spp. from other fungal species that affect tomato plants. The methodology used is based on the selective amplification of the internal transcribed spacer (ITS) region of Fusarium spp. This assay revealed to be highly specific and sensitive for Fusarium species, targeting only the 29 Fusarium isolates from the 45 tested isolates associated to tomato diseases. Sensitivity was assessed with serial dilutions of Fusarium genomic DNA, with the limit of detection of 3.05 pg. An absolute DNA quantification method was also established, based on the determination of the absolute number of target copies. Finally, the effectiveness of the assay was successfully validated with the detection and quantification of Fusarium spp. in potentially infected tomato plants from an experimental field and in control plants grown under controlled conditions. The established methodology allows a reliable, sensitive, and reproducible estimation of Fusarium accumulation in infected tomato plants, gaining new insights for disease control and providing an additional tool in the screening of resistant plants.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Carla Varanda
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Mariana Patanita
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Joana Amaro Ribeiro
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Patrick Materatski
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - André Albuquerque
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Maria do Rosário Félix
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
4
|
Mansotra R, Ali T, Bhagat N, Vakhlu J. Injury and not the pathogen is the primary cause of corm rot in Crocus sativus (saffron). FRONTIERS IN PLANT SCIENCE 2023; 14:1074185. [PMID: 36760646 PMCID: PMC9902776 DOI: 10.3389/fpls.2023.1074185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Fusarium oxysporum has been reported to be the most devastating pathogen of Crocus sativus L., a commercially significant crop that yields the saffron spice. However, most of the pathogen isolations have been done from the diseased tissue, mostly from rotten corms, but no study has been conducted on diseased saffron fields. To fill the knowledge gap, the current study was carried out with the intention of recording the diversity of cultivable fungus species from saffron fields and screening them for pathogenicity towards saffron. The three study locations in Jammu and Kashmir, Srinagar (Pampore), Kishtwar, and Ramban, yielded a total of 45 fungal isolates. The internal transcribed spacer (ITS) of rDNA was used for the molecular identification. ITS rDNA-based sequence analysis classified all the operational taxonomic units (OTUs) into two phyla-Ascomycota (88.88%) and Mucoromycota (11.11%). Moreover, Fusarium (57.77%), Geotrichum (17.77%), Mucor (11.11%), Aspergillus (4.44%), Trichoderma (4.44%), Galactomyces (2.22%), and Colletotrichum (2.22%) all had different total abundances at the genus level. It was discovered that the saffron fields in Srinagar have fewer varied fungal species than the other two selected sites. All of the fungal isolates isolated including Fusarium solani, Aspergillus flavus, Trichoderma harzianum, Fusarium neocosmosporiellum, and Mucor circinelloides were pathogenic according to the pathogenicity test; however, injury to the saffron plant was found to be a must. These fungi were pathogenic in addition to F. oxysporum, which is well documented as a major cause of saffron corm rot diseases in Srinagar, but in the present study, injury was a must for F. oxysporum as well. The percentage disease severity index for both saffron roots and corms varied for each fungal isolate.
Collapse
|
5
|
Plant-Pathogenic Fusarium Species. J Fungi (Basel) 2022; 9:jof9010013. [PMID: 36675834 PMCID: PMC9866786 DOI: 10.3390/jof9010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Fusarium species are ubiquitous fungi, both saprotrophic and pathogenic to plants, animals and humans. They are also potent mycotoxin producers which makes them one of the most devastating plant pathogens. Mycotoxin biosynthesis and regulation has recently become one of the mainstream research topics, since knowledge concerning individual metabolic pathways became available and modern 'omics' techniques allowed us to expand this even further. Independently, high-throughput sequencing methodology helped researchers gain insight into the complex phylogenetic relationships among closely related genotypes comprising Fusarium populations, species and species complexes. Molecular tools have so far been very powerful in species identification and phylogeny, as the great diversity of the Fusarium genus has forced scientists to continuously revise previously described taxons.
Collapse
|