1
|
Marino A, Leonardi M, Berrilli E, Garzia M, Zambonelli A, Cerretti P, Iotti M. Identification of Dipteran species inhabiting Tuber aestivum (the summer truffle) ascomata. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1239. [PMID: 39578252 DOI: 10.1007/s10661-024-13401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Tuber spp. (Ascomycota) forms hypogeous fruiting bodies (truffles) that host many microbial species as well as invertebrates which feed on them. Despite the larvae and adults of Diptera and Coleoptera are commonly found to inhabit truffles, molecular investigations assessing their occurrence are still few and the number of species is probably underestimated. In this study, 52 larvae and adults of Diptera from 23 T. aestivum ascomata collected in two provinces of northern and central Italy were molecularly characterized. The sequences fell into four Diptera families, and four taxa were identified as Cheilosia soror, Phaonia cf. trimaculata, Drosophila subobscura, and Suillia gigantea. Morphology of adults belonging to these species confirmed their identity. Additional three taxa belonging to the Helomyzidae remained unclassified. The study highlighted the coexistence of different Diptera species in the same ascoma, suggesting potential lack of competitive exclusion. Geographical distribution analysis reveals non-site specificity for most species. This research contributes insights into the diversity of Dipteran species and their interactions with truffles and lays the groundwork for their monitoring, at a time where truffle resources are threatened by anthropic and environmental factors.
Collapse
Affiliation(s)
- Alessia Marino
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Marco Leonardi
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | - Emanuele Berrilli
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Matteo Garzia
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Pierfilippo Cerretti
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Mirco Iotti
- Department of Life, Health and Environmental Sciences (MeSVA), University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| |
Collapse
|
2
|
Runnel K, Tedersoo L, Krah FS, Piepenbring M, Scheepens JF, Hollert H, Johann S, Meyer N, Bässler C. Toward harnessing biodiversity-ecosystem function relationships in fungi. Trends Ecol Evol 2024:S0169-5347(24)00255-6. [PMID: 39532622 DOI: 10.1016/j.tree.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Fungi are crucial for terrestrial ecosystems, yet the role of fungal diversity in ecosystem functions remains unclear. We synthesize fungal biodiversity and ecosystem function (BEF) relationships, focusing on plant biomass production, carbon storage, decomposition, and pathogen or parasite resistance. The observed BEF relationships for these ecosystem functions vary in strength and direction, complicating generalizations. Strong positive relationships are generally observed when multiple ecosystem functions are addressed simultaneously. Often, fungal community composition outperforms species richness in predicting ecosystem functions. For more comprehensive fungal BEF research, we recommend studying natural communities, considering the simultaneous functions of a broader array of fungal guilds across spatiotemporal scales, and integrating community assembly concepts into BEF research. For this, we propose a conceptual framework and testable hypotheses.
Collapse
Affiliation(s)
- Kadri Runnel
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany; University of Tartu, Institute of Ecology and Earth Sciences, 50409 Tartu, Estonia.
| | - Leho Tedersoo
- University of Tartu, Institute of Ecology and Earth Sciences, 50409 Tartu, Estonia
| | - Franz-Sebastian Krah
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Fungal Ecology, 95440 Bayreuth, Germany; Global Change Research Institute of the Czech Academy of Sciences, 60300 Brno, Czech Republic
| | - Meike Piepenbring
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - J F Scheepens
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Sarah Johann
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - Nele Meyer
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany
| | - Claus Bässler
- Goethe University Frankfurt, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, 60438 Frankfurt am Main, Germany; University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Fungal Ecology, 95440 Bayreuth, Germany; Global Change Research Institute of the Czech Academy of Sciences, 60300 Brno, Czech Republic
| |
Collapse
|
3
|
Fan Q, Yang T, Li H, Wang XM, Liao HF, Shen PH, Yang ZL, Zeng WB, Wang YB. Molecular phylogeny and morphology reveal two new entomopathogenic species of Ophiocordyceps (Ophiocordycipitaceae, Hypocreales) parasitic on termites from China. MycoKeys 2024; 103:1-24. [PMID: 38495949 PMCID: PMC10943269 DOI: 10.3897/mycokeys.103.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
Abstract
Two new termite-pathogenic species, Ophiocordycepsglobiperitheciata and O.longistipes, are described from Yunnan Province, China. Six-locus (ITS, nrSSU, nrLSU, tef-1α, rpb1 and rpb2) phylogenetic analyses in combination with morphological observations were employed to characterize these two species. Phylogenetically, O.globiperitheciata is most closely related to Hirsutellacryptosclerotium and O.communis, whereas O.longistipes shares a sister relationship with O.fusiformis. However, O.globiperitheciata differs from H.cryptosclerotium by parasitizing Blattodea and producing clavate, unbifurcated stromata. Ophiocordycepsglobiperitheciata is distinguished from O.communis by multiple stromata, shorter asci and ascospores. Ophiocordycepslongistipes differs from O.fusiformis in producing larger stromata, perithecia, asci and ascospores, as well as smaller citriform or oval conidia. Morphological descriptions of the two new species and a dichotomous key to the 19 termite-pathogenic Ophiocordyceps species are presented.
Collapse
Affiliation(s)
- Qi Fan
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Tao Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hui Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Xue-Mei Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - He-Fa Liao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Pei-Hong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhu-Liang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Wen-Bo Zeng
- College of Life Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Yuan-Bing Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
4
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|