1
|
Mateus P, Sousa F, Martins M, Sousa B, Afonso A, Oliveira F, Moutinho-Pereira J, Fidalgo F, Soares C. The ectomycorrhizal fungus Paxillus involutus positively modulates Castanea sativa Miller (var. Marsol) responses to heat and drought co-exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108999. [PMID: 39098185 DOI: 10.1016/j.plaphy.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Castanea sativa Miller, a high-valuable crop for Mediterranean countries, is facing frequent and prolonged periods of heat and drought, severely affecting chestnut production. Aiming to tackle this problem, this study unraveled the influence of mycorrhizal association with the fungi Paxillus involutus (Batsch) on young chestnut plants' responses to combined heat (42 °C; 4 h/day) and drought (no irrigation until soil moisture reached 25%) over 21 days of stress exposure. Heat stress had no harmful effects on growth, photosynthesis, nor induced oxidative stress in either mycorrhizal (MR) or non-mycorrhizal (NMR) chestnut plants. However, drought (alone or combined) reduced the growth of NMR plants, affecting water content, leaf production, and foliar area, while also hampering net CO2 assimilation and carbon relations. The mycorrhizal association, however, mitigated the detrimental effects of both stresses, resulting in less susceptibility and fewer growth limitations in MR chestnut plants, which were capable of ensuring a proper carbon flow. Evaluation of the oxidative metabolism revealed increased lipid peroxidation and hydrogen peroxide levels in NMR plants under water scarcity, supporting their higher susceptibility to stress. Conversely, MR plants activated defense mechanisms by accumulating antioxidant metabolites (ascorbate, proline and glutathione), preventing oxidative damage, especially under the combined stress. Overall, drought was the most detrimental condition for chestnut growth, with heat exacerbating stress susceptibility. Moreover, mycorrhizal association with P. involutus substantially alleviated these effects by improving growth, water relations, photosynthesis, and activating defense mechanisms. Thus, this research highlights mycorrhization's potential to enhance C. sativa resilience against climate change, especially at early developmental stages.
Collapse
Affiliation(s)
- Pedro Mateus
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Filipa Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Andreia Afonso
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - Fátima Oliveira
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - José Moutinho-Pereira
- CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
2
|
Tan Q, You L, Hao C, Wang J, Liu Y. Effects of four bolete species on ectomycorrhizae formation and development in Pinus thunbergii and Quercus acutissima. BMC Ecol Evol 2024; 24:54. [PMID: 38664655 PMCID: PMC11044466 DOI: 10.1186/s12862-024-02239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.
Collapse
Affiliation(s)
- Qianwen Tan
- School of Agriculture, Ludong University, Yan Tai, China
- Plant Stem Cell Research Institute, Shandong Anran Nanometer Industrial Development Co., Ltd, Hangzhou, Weihai, China
| | - Lunhe You
- School of Agriculture, Ludong University, Yan Tai, China
| | - Chen Hao
- School of Agriculture, Ludong University, Yan Tai, China
| | - Jianrui Wang
- School of Agriculture, Ludong University, Yan Tai, China
| | - Yu Liu
- School of Agriculture, Ludong University, Yan Tai, China.
| |
Collapse
|
3
|
Shan J, Peng F, Yu J, Li Q. Identification and Characterization of a Plant Endophytic Fungus Paraphaosphaeria sp. JRF11 and Its Growth-Promoting Effects. J Fungi (Basel) 2024; 10:120. [PMID: 38392792 PMCID: PMC10890554 DOI: 10.3390/jof10020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Endophytic fungi establish mutualistic relationships with host plants and can promote the growth and development of plants. In this study, the endophytic fungus JRF11 was isolated from Carya illinoinensis. Sequence analysis of the internal transcribed spacer (ITS) region and 18S rRNA gene combined with colonial and conidial morphology identified JRF11 as a Paraphaosphaeria strain. Plant-fungus interaction assays revealed that JRF11 showed significant growth-promoting effects on plants. In particular, JRF11 significantly increased the root biomass and soluble sugar content of plants. Furthermore, transcriptome analysis demonstrated that JRF11 treatment reprogrammed a variety of genes involved in plant mitogen-activated protein kinase (MAPK) signaling and starch and sucrose metabolism pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Our research indicates that beneficial endophytic fungi are able to interact with plants and exhibit outstanding plant growth-promoting activities.
Collapse
Affiliation(s)
- Jie Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
4
|
Liu J, Xu Y, Si YJ, Li BQ, Chen P, Wu LL, Guo P, Ji RQ. The Diverse Mycorrizal Morphology of Rhododendron dauricum, the Fungal Communities Structure and Dynamics from the Mycorrhizosphere. J Fungi (Basel) 2024; 10:65. [PMID: 38248974 PMCID: PMC10817234 DOI: 10.3390/jof10010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
It is generally believed that mycorrhiza is a microecosystem composed of mycorrhizal fungi, host plants and other microscopic organisms. The mycorrhiza of Rhododendron dauricum is more complex and the diverse morphology of our investigated results displays both typical ericoid mycorrhizal characteristics and ectomycorrhizal traits. The characteristics of ectendoomycorrhiza, where mycelial invade from the outside into the root cells, have also been observed. In order to further clarify the mycorrhizal fungi members and other fungal communities of R. dauricum mycorrhiza, and explore the effects of vegetation and soil biological factors on their community structure, we selected two woodlands in the northeast of China as samples-one is a mixed forest of R. dauricum and Quercus mongolica, and the other a mixed forest of R. dauricum, Q. mongolica, and Pinus densiflor. The sampling time was during the local growing season, from June to September. High-throughput sequencing yielded a total of 3020 fungal amplicon sequence variants (ASVs), which were based on sequencing of the internal transcribed spacer ribosomal RNA (ITS rRNA) via the Illumina NovaSeq platform. In the different habitats of R. dauricum, there are differences in the diversity of fungi obtained from mycorrhizal niches, and specifically the mycorrhizal fungal community structure in the complex vegetation of mixed forests, where R. dauricum is found, exhibits greater stability, with relatively minor changes over time. Soil fungi are identified as the primary source of fungi within the mycorrhizal niche, and the abundance of mycorrhizal fungi from mycorrhizal niches in R. dauricum is significantly influenced by soil pH, organic matter, and available nitrogen. The relationship between soil fungi and mycorrhizal fungi from mycorrhizal niches is simultaneously found to be intricate, while the genus Hydnellum emerges as a central genus among mycorrhizal fungi from mycorrhizal niches. However, there is currently a substantial gap in the foundational research of this genus, including the fact that mycorrhizal fungi from mycorrhizal niches have, compared to fungi present in the soil, proven to be more sensitive to changes in soil moisture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui-Qing Ji
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.L.); (Y.X.); (Y.-J.S.); (B.-Q.L.); (P.C.); (L.-L.W.); (P.G.)
| |
Collapse
|