Wang Y, Yang LH, Tong LL, Yuan L, Ren B, Guo DS. Comparative metabolic profiling of mycelia, fermentation broth, spore powder and fruiting bodies of Ophiocordyceps gracilis by LC-MS/MS.
PHYTOCHEMICAL ANALYSIS : PCA 2023;
34:984-996. [PMID:
37482969 DOI:
10.1002/pca.3266]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION
Ophiocordyceps gracilis, a type of edible and medicinal fungus, exhibits multiple health-promoting effects. Due to the scarcity of natural O. gracilis, artificial cultures have been developed as its substitutes. However, lacking comprehension of the metabolite composition of cultures limits its utilisation.
OBJECTIVE
This research aimed to evaluate the nutritional and medicinal value of four cultures of O. gracilis by analysing their metabolite composition. In addition, metabolic pathways in mycelia and fruiting bodies were analysed to explore fruiting body formation mechanism at metabolic level.
METHOD
The mycelia, fermentation broth, spore powder and fruiting bodies of O. gracilis were cultivated in this study. Their metabolite composition was compared using an untargeted metabolomics approach based on liquid chromatography-tandem mass spectrometry (LC-MS/MS).
RESULTS
Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) showed that the four cultures have noticeable differences in metabolite composition. A total of 612 metabolites were identified, among which 159 metabolites showed significant differences, and these differential metabolites were classified into 13 categories. The metabolites in the fruiting bodies were the most abundant compared with other cultures. However, each culture had its own advantages and significantly accumulates some active metabolites respectively. Pearson's correlation analysed the mutual relationship among metabolites. In addition, seven metabolic pathways were closely related to fruiting body formation, such as "Biosynthesis of plant secondary metabolites", "amino acids metabolism", "tricarboxylic acid (TCA) cycle".
CONCLUSION
This study offered a reference to mycelia, fermentation broth, spore powder and fruiting bodies of O. gracilis as health-promoting functional foods and medicine.
Collapse