1
|
Lai Y, Lan X, Chen Z, Lou G, Li Y, Liu C, Feng J, Li X, Wang Y. The Role of Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. Polysaccharides in Regulating the Gut Microbiota and Its Health Benefits. Molecules 2025; 30:1193. [PMID: 40141970 PMCID: PMC11944627 DOI: 10.3390/molecules30061193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Wolfiporia cocos (F. A. Wolf) Ryvarden and Gilb. is a widely used herb in China, belonging to the large fungi of the family Polyporaceae. P. cocos; it consists of a variety of biologically active ingredients such as polysaccharides, triterpenes, and sterols, and is considered a treasure in traditional Chinese medicine (TCM). Notably, P. cocos polysaccharides, as the most prominent constituent, are of interest for their superior anti-obesity, anti-tumor, anti-inflammatory, antioxidant, and immunomodulatory activities. P. cocos polysaccharides can be divided into water-soluble polysaccharides and water-insoluble polysaccharides, which may contribute to their diverse biological functions. Numerous scholars have focused on the extraction process, structural identification, and classical pharmacological pathways of P. cocos polysaccharides, but there are few systematic reviews on P. cocos polysaccharides regulating the gut microbiota. Natural products and their active ingredients are closely related to intestinal health, and further exploration of these mechanisms is warranted. This review summarizes the recent cases of P. cocos polysaccharides regulating the gut microbiota to promote health and discusses their relationship with bioactive functions. It aims to provide a basis for exploring the new mechanisms of P. cocos polysaccharides in promoting intestinal health and offers a new vision for the further development of functional products.
Collapse
Affiliation(s)
- Yong Lai
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xin Lan
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Zhicheng Chen
- School of Clinic Medical Sciences, Southwest Medical University, Luzhou 646000, China;
| | - Guanhua Lou
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Ying Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Chang Liu
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Jianan Feng
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Xi Li
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| | - Yu Wang
- Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China; (Y.L.); (G.L.); (Y.L.); (C.L.); (J.F.)
| |
Collapse
|
2
|
Singh A, Saini RK, Kumar A, Chawla P, Kaushik R. Mushrooms as Nutritional Powerhouses: A Review of Their Bioactive Compounds, Health Benefits, and Value-Added Products. Foods 2025; 14:741. [PMID: 40077445 PMCID: PMC11899115 DOI: 10.3390/foods14050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Mushrooms are known to be a nutritional powerhouse, offering diverse bioactive compounds that promote and enhance health. Mushrooms provide a distinguishable taste and aroma and are an essential source of vitamin D2, vitamin B complex, hydroxybenzoic acids (HBAs) and hydroxycinnamic acids (HCAs), terpenes, sterols, and β-glucans. Edible mushroom varieties such as Hericium erinaceus, Ganoderma sp., and Lentinula edodes are recognized as functional foods due to their remarkable potential for disease prevention and promotion of overall health and well-being. These varieties have antioxidants, anti-inflammatory, cytoprotective, cholesterol-lowering, antidiabetic, antimicrobial, and anticancer properties, as well as controlling blood pressure, being an immunity booster, and strengthening bone properties. In addition, they contain essential non-digestible oligosaccharides (NDOs) and ergothioneine, a potential substrate for gut microflora. Supplementing our daily meals with those can add value to our food, providing health benefits. Novel edible mushrooms are being investigated to explore their bioactive substances and their therapeutic properties, to benefit human health. The scientific community (mycologists) is currently studying the prospects for unlocking the full health advantages of mushrooms. This review aims to promote knowledge of mushroom culturing conditions, their nutritional potential, and the value-added products of 11 varieties.
Collapse
Affiliation(s)
- Akruti Singh
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Ramesh Kumar Saini
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Amit Kumar
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Ravinder Kaushik
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India; (A.S.); (R.K.S.); (A.K.)
| |
Collapse
|
3
|
Desiderio A, Goppa L, Santambrogio C, Brocca S, Buratti S, Girometta CE, Sarkar M, Venuti MT, Savino E, Rossi P, Ferrari E. Improving the Proteome-Mining of Schizophyllum commune to Enhance Medicinal Mushroom Applications. J Fungi (Basel) 2025; 11:120. [PMID: 39997414 PMCID: PMC11856175 DOI: 10.3390/jof11020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
This study presents the first comprehensive proteomic profile of an Italian strain of Schizophyllum commune, a highly heterogeneous white-rot fungal species with significant potential for industrial, nutraceutical, cosmeceutical, and clinical applications. Three protein extraction methods and their impact on yield and resulting protein composition have been compared. Results revealed that the combination of Tris-Cl and urea increases the total protein yield and the variety of enzymatic species related to pivotal pathways. Notably, over 2000 proteins were identified, including enzymes involved in the growth and development of mycelium, trehalose biosynthesis, and different types of carbohydrate-active enzymes (CAZymes). These enzymes are crucial for nutraceutical and agro-industrial applications of S. commune. The multiple-step proteomic approach used could be a model for investigating other fungal species.
Collapse
Affiliation(s)
- Anthea Desiderio
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (S.B.); (C.E.G.); (E.S.)
| | - Lorenzo Goppa
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (S.B.); (C.E.G.); (E.S.)
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (C.S.); (S.B.)
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (C.S.); (S.B.)
| | - Simone Buratti
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (S.B.); (C.E.G.); (E.S.)
| | - Carolina Elena Girometta
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (S.B.); (C.E.G.); (E.S.)
| | - Meghma Sarkar
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.S.); (M.T.V.)
| | - Maria Teresa Venuti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.S.); (M.T.V.)
| | - Elena Savino
- Department of Earth and Environmental Sciences (DSTA), University of Pavia, 27100 Pavia, Italy; (A.D.); (L.G.); (S.B.); (C.E.G.); (E.S.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.S.); (M.T.V.)
| | - Emanuele Ferrari
- Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research Council of Italy, 28922 Verbania, Italy
| |
Collapse
|
4
|
Xu X, Yu C, Liu Z, Cui X, Guo X, Wang H. Chemical Composition, Antioxidant and Anti-Inflammatory Activity of Shiitake Mushrooms ( Lentinus edodes). J Fungi (Basel) 2024; 10:552. [PMID: 39194878 DOI: 10.3390/jof10080552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Shiitake mushrooms (Lentinus edodes) are renowned as the "King of mountain treasures" in China due to their abundant nutritional and health-enhancing properties. Intensive chemical investigations of the fruiting bodies and mycelium of Shiitake mushrooms (Lentinus edodes) afforded five new compounds (1-5), named lentinmacrocycles A-C and lentincoumarins A-B, along with fifteen known compounds (6-20). Their structures and absolute configurations were elucidated by extensive spectroscopic analysis, including one-and two-dimensional (1D and 2D) NMR spectroscopy, circular dichroism (CD), and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The anti-inflammatory activity test showed that lentincoumarins A (4), (3S)-7-hydroxymellein (9), (3R)-6-hydroxymellein (11) and succinic acid (18) exhibited strong NO inhibitory effects (IC50 < 35 μM), and that (3S)-5-hydroxymellein (10) and (3R)-6-hydroxymellein (11) exhibited potent TNF-α inhibitory effects (IC50 < 80 μM) and were more potent than the positive control, Indomethacin (IC50 = 88.5 ± 2.1 μM). The antioxidant activity test showed that (3R)-6-hydroxymellein (11) had better DPPH radical scavenging activity (IC50 = 25.2 ± 0.5 μM).
Collapse
Affiliation(s)
- Xiaoming Xu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chong Yu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhenyang Liu
- Shenyang Baide Biotechnology Co., Ltd, Shenyang 110016, China
| | - Xiaohang Cui
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohe Guo
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haifeng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Zhao S, Pan Z, Azarakhsh N, Ramaswamy HS, Duan H, Wang C. Effects of high-pressure processing on the physicochemical and adsorption properties, structural characteristics, and dietary fiber content of kelp ( Laminaria japonica). Curr Res Food Sci 2023; 8:100671. [PMID: 38235495 PMCID: PMC10792453 DOI: 10.1016/j.crfs.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
To investigate the effects of high-pressure processing (HPP) on the physicochemical and adsorption properties and structural characteristics of kelp, kelp slice (KS) and kelp powder (KP) were treated under different pressures (300, 450, and 600 MPa) for 5 and 10 min. Compared to untreated KP, HPP-treated KP yielded a 1.31-fold increase in water holding capacity (600 MPa/5 min), a 0.12-fold increase in swelling capacity (450 MPa/10 min), a 1.33-fold increase in oil holding capacity (600 MPa/10 min), a 10-fold increase in glucose adsorption capacity (450 MPa/10 min), and a 0.22-fold increase in cholesterol adsorption capacity (163.1 mg/g DW at 450 MPa/10 min), and exhibited good Cd (Ⅱ) adsorption capacity when its concentration was 10 mmol/L in the small intestine. The physicochemical properties of HPP-treated KS were not improved due to its low specific surface area. In addition, HPP treatment efficiently reduced the particle size of KP and increased its total and soluble dietary fiber content by 17% and 63% at 600 MPa/10 min, respectively. Scanning electron microscope micrographs demonstrated that the surface of HPP-treated KP was rough and porous, and the specific surface area increased with increasing pressure and processing time. To conclude, the results obtained in the present study suggest that HPP is a promising processing method for improving the functionality and structural characteristics of KP and provide a theoretical basis for the utilization of HPP-treated KP as a fiber-rich ingredient in the functional food industry.
Collapse
Affiliation(s)
- Songlin Zhao
- International School, Jinan University, Guangzhou, 510632, China
| | - Zhitao Pan
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nima Azarakhsh
- International School, Jinan University, Guangzhou, 510632, China
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, Montréal, QC, Canada
| | - Hanying Duan
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Chao Wang
- Department of Food Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|