Zhao S, Pan Z, Azarakhsh N, Ramaswamy HS, Duan H, Wang C. Effects of high-pressure processing on the physicochemical and adsorption properties, structural characteristics, and dietary fiber content of kelp (
Laminaria japonica).
Curr Res Food Sci 2023;
8:100671. [PMID:
38235495 PMCID:
PMC10792453 DOI:
10.1016/j.crfs.2023.100671]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/19/2024] Open
Abstract
To investigate the effects of high-pressure processing (HPP) on the physicochemical and adsorption properties and structural characteristics of kelp, kelp slice (KS) and kelp powder (KP) were treated under different pressures (300, 450, and 600 MPa) for 5 and 10 min. Compared to untreated KP, HPP-treated KP yielded a 1.31-fold increase in water holding capacity (600 MPa/5 min), a 0.12-fold increase in swelling capacity (450 MPa/10 min), a 1.33-fold increase in oil holding capacity (600 MPa/10 min), a 10-fold increase in glucose adsorption capacity (450 MPa/10 min), and a 0.22-fold increase in cholesterol adsorption capacity (163.1 mg/g DW at 450 MPa/10 min), and exhibited good Cd (Ⅱ) adsorption capacity when its concentration was 10 mmol/L in the small intestine. The physicochemical properties of HPP-treated KS were not improved due to its low specific surface area. In addition, HPP treatment efficiently reduced the particle size of KP and increased its total and soluble dietary fiber content by 17% and 63% at 600 MPa/10 min, respectively. Scanning electron microscope micrographs demonstrated that the surface of HPP-treated KP was rough and porous, and the specific surface area increased with increasing pressure and processing time. To conclude, the results obtained in the present study suggest that HPP is a promising processing method for improving the functionality and structural characteristics of KP and provide a theoretical basis for the utilization of HPP-treated KP as a fiber-rich ingredient in the functional food industry.
Collapse