1
|
Kolbaşı EN, Huseyinsinoglu BE, Ozdemir Z, Bayraktaroglu Z, Soysal A. Effectiveness of Intermittent Theta Burst Stimulation to Enhance Upper Extremity Recovery After Stroke: A Pilot Study. Arch Phys Med Rehabil 2024; 105:1880-1889. [PMID: 38862033 DOI: 10.1016/j.apmr.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES To first investigate the effectiveness of modified constraint-ınduced movement therapy (mCIMT) in low-functioning patients with stroke (PwS). Second, we aimed to investigate the efficiency of intermittent theta-burst stimulation (iTBS), applied on intermittent days, in addition to the mCIMT in PwS. DESIGN A randomized, sham-controlled, single-blinded study. SETTING Outpatient clinic. PARTICIPANTS Fifteen PwS (age [mean±SD]: 66.3±9.2 years; 53% female) who were in the first 1 to 12 months after the incident were included in the study. INTERVENTIONS PwS were divided into 3 groups: (1) mCIMT alone; (2) mCIMT + sham iTBS; (3) mCIMT + iTBS. Each group received 15 sessions of mCIMT (1 hour/session, 3 sessions/week). iTBS was applied with 600 pulses on impaired M1 before mCIMT. MAIN OUTCOME MEASURES Upper extremity (UE) impairment was assessed with the Fugl-Meyer Test (FMT-UE), whereas the motor function was evaluated with the Wolf-Motor Function Test (WMFT). Motor Activity Log-28 (MAL-28) was used to evaluate the amount of use and how well (How Well Scale) the impaired UE movements. RESULTS With-in-group analysis revealed that all groups had statistically significant improvements based on the FMT-UE and MAL-28 (p<.05). However, the performance time and arm strength variables of WMFT were only increased in the mCIMT + iTBS group (p<.05). The only between-group difference was observed in the intracortical facilitation in favor of the mCIMT + iTBS group (p<.05). The effect size of iTBS was f=0.18. CONCLUSIONS Our findings suggest that mCIMT with and without the application of iTBS has increased the UE motor function in low-functioning PwS. iTBS applied on intermittent days may have additional benefits as an adjunct therapy for facilitating cortical excitability, increasing the speed and strength of the impaired UE as well as decreasing disability.
Collapse
Affiliation(s)
- Esma Nur Kolbaşı
- Department of Physiotherapy and Rehabilitation, Istanbul Medeniyet University, Istanbul; Physiotherapy and Rehabilitation Department, Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul
| | - Burcu Ersoz Huseyinsinoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Marmara University, Istanbul.
| | - Zeynep Ozdemir
- Department of Neurology, Bakırkoy Prof Dr Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, Istanbul Health Sciences University, Istanbul
| | - Zubeyir Bayraktaroglu
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakırkoy Prof Dr Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, Istanbul Health Sciences University, Istanbul
| |
Collapse
|
2
|
Cantone M. Clinical Updates and Perspectives on Transcranial Magnetic Stimulation (TMS). J Clin Med 2024; 13:3794. [PMID: 38999361 PMCID: PMC11242073 DOI: 10.3390/jcm13133794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Since its introduction nearly 30 years ago, Transcranial Magnetic Stimulation (TMS) has increasingly been used to both provide novel insights into the pathophysiology of the neural circuitry that underlies neurological and psychiatric diseases and to manipulate neural activities in a non-invasive manner [...].
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital "G. Rodolico-San Marco", 95123 Catania, Italy
| |
Collapse
|
3
|
Kolbaşı EN, Huseyinsinoglu BE, Ozdemir Z, Bayraktaroglu Z, Soysal A. Priming constraint-induced movement therapy with intermittent theta burst stimulation to enhance upper extremity recovery in patients with stroke: protocol for a randomized controlled study. Acta Neurol Belg 2024; 124:887-893. [PMID: 38329642 DOI: 10.1007/s13760-024-02472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The treatments based on motor control and motor learning principles have gained popularity in the last 20 years, as well as non-invasive brain stimulations that enhance neuroplastic changes after stroke. However, the effect of intermittent theta burst stimulation (iTBS) in addition to evidence-based, intensive neurorehabilitation approaches such as modified constraint-induced movement therapy (mCIMT) is yet to be investigated. AIM We aim to establish a protocol for a randomized controlled study investigating the efficiency of mCIMT primed with iTBS after stroke. METHODS In this randomized controlled, single-blind study, patients with stroke (N = 17) will be divided into 3 groups: (a) mCIMT + real iTBS, (b) mCIMT + sham iTBS, and (c) mCIMT alone. 600-pulse iTBS will be delivered to the primary motor cortex on the ipsilesional hemisphere, and then, patients will receive mCIMT for 1 h/session, 3 sessions/week for 5 weeks. Upper extremity recovery will be assessed with Fugl-Meyer Test-Upper Extremity and Wolf Motor Function Test. Electrophysiological assessments, such as Motor-Evoked Potentials, Resting Motor Threshold, Short-Intracortical Inhibition, and Intracortical Facilitation, will also be included. CONCLUSIONS In this study, a protocol of an ongoing intervention study investigating the effectiveness of iTBS on ipsilesional M1 prior to the mCIMT in patients with stroke is proposed. This will be the first study to research priming mCIMT with iTBS and it may have the potential to reveal the true effect of the iTBS when it is added to the high-quality neurorehabilitation approaches. TRIAL REGISTRATION Trial registration number: NCT05308667.
Collapse
Affiliation(s)
- Esma Nur Kolbaşı
- Department of Physiotherapy and Rehabilitation, Istanbul Medeniyet University, Istanbul, Turkey
- Institute of Graduate Studies, Physiotherapy and Rehabilitation Department, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Burcu Ersoz Huseyinsinoglu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Marmara University, Istanbul, Turkey.
| | - Zeynep Ozdemir
- Department of Neurology, Bakırkoy Prof. Dr. Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, University of Health Sciences, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakırkoy Prof. Dr. Mazhar Osman Training and Research Hospital for Psychiatric, Neurologic and Neurosurgical Diseases, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
4
|
Salemi M, Ravo M, Lanza G, Schillaci FA, Ventola GM, Marchese G, Salluzzo MG, Cappelletti G, Ferri R. Gene Expression Profiling of Post Mortem Midbrain of Parkinson's Disease Patients and Healthy Controls. Int J Mol Sci 2024; 25:707. [PMID: 38255780 PMCID: PMC10815072 DOI: 10.3390/ijms25020707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) stands as the most prevalent degenerative movement disorder, marked by the degeneration of dopaminergic neurons in the substantia nigra of the midbrain. In this study, we conducted a transcriptome analysis utilizing post mortem mRNA extracted from the substantia nigra of both PD patients and healthy control (CTRL) individuals. Specifically, we acquired eight samples from individuals with PD and six samples from CTRL individuals, with no discernible pathology detected in the latter group. RNA sequencing was conducted using the TapeStation 4200 system from Agilent Technologies. A total of 16,148 transcripts were identified, with 92 mRNAs displaying differential expression between the PD and control groups. Specifically, 33 mRNAs were significantly up-regulated, while 59 mRNAs were down-regulated in PD compared to the controls. The identification of statistically significant signaling pathways, with an adjusted p-value threshold of 0.05, unveiled noteworthy insights. Specifically, the enriched categories included cardiac muscle contraction (involving genes such as ATPase Na+/K+ transporting subunit beta 2 (ATP1B2), solute carrier family 8 member A1 (SLC8A1), and cytochrome c oxidase subunit II (COX2)), GABAergic synapse (involving GABA type A receptor-associated protein-like 1 (GABARAPL1), G protein subunit beta 5 (GNB5), and solute carrier family 38 member 2 (SLC38A2), autophagy (involving GABARAPL1 and tumor protein p53-inducible nuclear protein 2 (TP53INP2)), and Fc gamma receptor (FcγR) mediated phagocytosis (involving amphiphysin (AMPH)). These findings uncover new pathophysiological dimensions underlying PD, implicating genes associated with heart muscle contraction. This knowledge enhances diagnostic accuracy and contributes to the advancement of targeted therapies.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| | - Maria Ravo
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Giuseppe Lanza
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
- Department of Surgery and Medical–Surgical Specialties, University of Catania, 95100 Catania, Italy
| | | | - Giovanna Maria Ventola
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 94081 Baroniss, Italy; (M.R.); (G.M.V.); (G.M.)
- Genome Research Center for Health–CRGS, 94081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| | | | - Raffaele Ferri
- Oasi Research Institute–IRCCS, 94018 Troin, Italy; (G.L.); (F.A.S.); (M.G.S.); (R.F.)
| |
Collapse
|
5
|
Fisicaro F, Lanza G, Figorilli M. Special Issue "Sleep Disorders: From Clinical Research to Daily Practice". J Clin Med 2023; 12:5271. [PMID: 37629313 PMCID: PMC10456104 DOI: 10.3390/jcm12165271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Healthy sleep is indissolubly linked to both physical and mental health, as pointed out by evidence showing the negative impact of poor sleep on neurological, psychiatric, cardiovascular, respiratory, metabolic, and immune systems, among others [...].
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
| | - Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy;
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
6
|
Cantone M, Lanza G, Fisicaro F, Bella R, Ferri R, Pennisi G, Waterstraat G, Pennisi M. Sex-specific reference values for total, central, and peripheral latency of motor evoked potentials from a large cohort. Front Hum Neurosci 2023; 17:1152204. [PMID: 37362949 PMCID: PMC10288153 DOI: 10.3389/fnhum.2023.1152204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Differentiating between physiologic and altered motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) is crucial in clinical practice. Some physical characteristics, such as height and age, introduce sources of variability unrelated to neural dysfunction. We provided new age- and height-adjusted normal values for cortical latency, central motor conduction time (CMCT), and peripheral motor conduction time (PMCT) from a large cohort of healthy subjects. Methods Previously reported data from 587 participants were re-analyzed. Nervous system disorders were ruled out by clinical examination and magnetic resonance imaging. MEP latency was determined as stimulus-to-response latency through stimulation with a circular coil over the "hot spot" of the First Dorsal Interosseous and Tibialis Anterior muscles, during mild tonic contraction. CMCT was estimated as the difference between MEP cortical latency and PMCT by radicular magnetic stimulation. Additionally, right-to-left differences were calculated. For each parameter, multiple linear regression models of increasing complexity were fitted using height, age, and sex as regressors. Results Motor evoked potential cortical latency, PMCT, and CMCT were shown to be age- and height-dependent, although age had only a small effect on CMCT. Relying on Bayesian information criterion for model selection, MEP cortical latency and PMCT were explained best by linear models indicating a positive correlation with both height and age. Also, CMCT to lower limbs positively correlated with height and age. CMCT to upper limbs positively correlated to height, but slightly inversely correlated to age, as supported by non-parametric bootstrap analysis. Males had longer cortical latencies and CMCT to lower limbs, as well as longer PMCT and cortical latencies to upper limbs, even when accounting for differences in body height. Right-to-left-differences were independent of height, age, and sex. Based on the selected regression models, sex-specific reference values were obtained for all TMS-related latencies and inter-side differences, with adjustments for height and age, where warranted. Conclusion A significant relationship was observed between height and age and all MEP latency values, in both upper and lower limbs. These set of reference values facilitate the evaluation of MEPs in clinical studies and research settings. Unlike previous reports, we also highlighted the contribution of sex.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico-San Marco”, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Gunnar Waterstraat
- Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
8
|
Figorilli M, Meloni M, Lanza G, Casaglia E, Lecca R, Saibene FL, Congiu P, Puligheddu M. Considering REM Sleep Behavior Disorder in the Management of Parkinson's Disease. Nat Sci Sleep 2023; 15:333-352. [PMID: 37180094 PMCID: PMC10167974 DOI: 10.2147/nss.s266071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is the result of the loss of physiological inhibition of muscle tone during REM sleep, characterized by dream-enacting behavior and widely recognized as a prodromal manifestation of alpha-synucleinopathies. Indeed, patients with isolated RBD (iRBD) have an extremely high estimated risk to develop a neurodegenerative disease after a long follow up. Nevertheless, in comparison with PD patients without RBD (PDnoRBD), the occurrence of RBD in the context of PD (PDRBD) seems to identify a unique, more malignant phenotype, characterized by a more severe burden of disease in terms of both motor and non-motor symptoms and increased risk for cognitive decline. However, while some medications (eg, melatonin, clonazepam, etc.) and non-pharmacological options have been found to have some therapeutic benefits on RBD there is no available treatment able to modify the disease course or, at least, slow down the neurodegenerative process underlying phenoconversion. In this scenario, the long prodromal phase may allow an early therapeutic window and, therefore, the identification of multimodal biomarkers of disease onset and progression is becoming increasingly crucial. To date, several clinical (motor, cognitive, olfactory, visual, and autonomic features) neurophysiological, neuroimaging, biological (biofluids or tissue biopsy), and genetic biomarkers have been identified and proposed, also in combination, as possible diagnostic or prognostic markers, along with a potential role for some of them as outcome measures and index of treatment response. In this review, we provide an insight into the present knowledge on both existing and future biomarkers of iRBD and highlight the difference with PDRBD and PDnoRBD, including currently available treatment options.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elisa Casaglia
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Nicoletti VG, Fisicaro F, Aguglia E, Bella R, Calcagno D, Cantone M, Concerto C, Ferri R, Mineo L, Pennisi G, Ricceri R, Rodolico A, Saitta G, Torrisi G, Lanza G, Pennisi M. Challenging the Pleiotropic Effects of Repetitive Transcranial Magnetic Stimulation in Geriatric Depression: A Multimodal Case Series Study. Biomedicines 2023; 11:biomedicines11030958. [PMID: 36979937 PMCID: PMC10046045 DOI: 10.3390/biomedicines11030958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Although the antidepressant potential of repetitive transcranial magnetic stimulation (rTMS), the pleiotropic effects in geriatric depression (GD) are poorly investigated. We tested rTMS on depression, cognitive performance, growth/neurotrophic factors, cerebral blood flow (CBF) to transcranial Doppler sonography (TCD), and motor-evoked potentials (MEPs) to TMS in GD. METHODS In this case series study, six drug-resistant subjects (median age 68.0 years) underwent MEPs at baseline and after 3 weeks of 10 Hz rTMS on the left dorsolateral prefrontal cortex. The percentage change of serum nerve growth factor, vascular endothelial growth factor, brain-derived growth factor, insulin-like growth factor-1, and angiogenin was obtained. Assessments were performed at baseline, and at the end of rTMS; psychocognitive tests were also repeated after 1, 3, and 6 months. RESULTS Chronic cerebrovascular disease was evident in five patients. No adverse/undesirable effect was reported. An improvement in mood was observed after rTMS but not at follow-up. Electrophysiological data to TMS remained unchanged, except for an increase in the right median MEP amplitude. TCD and neurotrophic/growth factors did not change. CONCLUSIONS We were unable to detect a relevant impact of high-frequency rTMS on mood, cognition, cortical microcircuits, neurotrophic/growth factors, and CBF. Cerebrovascular disease and exposure to multiple pharmacological treatments might have contributed.
Collapse
Affiliation(s)
- Vincenzo G Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Eugenio Aguglia
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, 95123 Catania, Italy
| | - Damiano Calcagno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital "G. Rodolico-San Marco", 95123 Catania, Italy
| | - Carmen Concerto
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ludovico Mineo
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Riccardo Ricceri
- Stroke Unit, Neurology Unit, Department of Neuroscience, Ospedale Civile di Baggiovara, Azienda Ospedaliero-Universitaria di Modena, 41126 Modena, Italy
| | - Alessandro Rodolico
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giulia Saitta
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giulia Torrisi
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| |
Collapse
|
10
|
Cantone M, Fisicaro F, Ferri R, Bella R, Pennisi G, Lanza G, Pennisi M. Sex differences in mild vascular cognitive impairment: A multimodal transcranial magnetic stimulation study. PLoS One 2023; 18:e0282751. [PMID: 36867595 PMCID: PMC9983846 DOI: 10.1371/journal.pone.0282751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Sex differences in vascular cognitive impairment (VCI) at risk for future dementia are still debatable. Transcranial magnetic stimulation (TMS) is used to evaluate cortical excitability and the underlying transmission pathways, although a direct comparison between males and females with mild VCI is lacking. METHODS Sixty patients (33 females) underwent clinical, psychopathological, functional, and TMS assessment. Measures of interest consisted of: resting motor threshold, latency of motor evoked potentials (MEPs), contralateral silent period, amplitude ratio, central motor conduction time (CMCT), including the F wave technique (CMCT-F), short-interval intracortical inhibition (SICI), intracortical facilitation, and short-latency afferent inhibition, at different interstimulus intervals (ISIs). RESULTS Males and females were comparable for age, education, vascular burden, and neuropsychiatric symptoms. Males scored worse at global cognitive tests, executive functioning, and independence scales. MEP latency was significantly longer in males, from both sides, as well CMCT and CMCT-F from the left hemisphere; a lower SICI at ISI of 3 ms from the right hemisphere was also found. After correction for demographic and anthropometric features, the effect of sex remained statistically significant for MEP latency, bilaterally, and for CMCT-F and SICI. The presence of diabetes, MEP latency bilaterally, and both CMCT and CMCT-F from the right hemisphere inversely correlated with executive functioning, whereas TMS did not correlate with vascular burden. CONCLUSIONS We confirm the worse cognitive profile and functional status of males with mild VCI compared to females and first highlight sex-specific changes in intracortical and cortico-spinal excitability to multimodal TMS in this population. This points to some TMS measures as potential markers of cognitive impairment, as well as targets for new drugs and neuromodulation therapies.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- * E-mail:
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Lanza G, Fisicaro F, Dubbioso R, Ranieri F, Chistyakov AV, Cantone M, Pennisi M, Grasso AA, Bella R, Di Lazzaro V. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front Aging Neurosci 2022; 14:995000. [PMID: 36225892 PMCID: PMC9549917 DOI: 10.3389/fnagi.2022.995000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Although primary degenerative diseases are the main cause of dementia, a non-negligible proportion of patients is affected by a secondary and potentially treatable cognitive disorder. Therefore, diagnostic tools able to early identify and monitor them and to predict the response to treatment are needed. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological technique capable of evaluating in vivo and in “real time” the motor areas, the cortico-spinal tract, and the neurotransmission pathways in several neurological and neuropsychiatric disorders, including cognitive impairment and dementia. While consistent evidence has been accumulated for Alzheimer’s disease, other degenerative cognitive disorders, and vascular dementia, to date a comprehensive review of TMS studies available in other secondary dementias is lacking. These conditions include, among others, normal-pressure hydrocephalus, multiple sclerosis, celiac disease and other immunologically mediated diseases, as well as a number of inflammatory, infective, metabolic, toxic, nutritional, endocrine, sleep-related, and rare genetic disorders. Overall, we observed that, while in degenerative dementia neurophysiological alterations might mirror specific, and possibly primary, neuropathological changes (and hence be used as early biomarkers), this pathogenic link appears to be weaker for most secondary forms of dementia, in which neurotransmitter dysfunction is more likely related to a systemic or diffuse neural damage. In these cases, therefore, an effort toward the understanding of pathological mechanisms of cognitive impairment should be made, also by investigating the relationship between functional alterations of brain circuits and the specific mechanisms of neuronal damage triggered by the causative disease. Neurophysiologically, although no distinctive TMS pattern can be identified that might be used to predict the occurrence or progression of cognitive decline in a specific condition, some TMS-associated measures of cortical function and plasticity (such as the short-latency afferent inhibition, the short-interval intracortical inhibition, and the cortical silent period) might add useful information in most of secondary dementia, especially in combination with suggestive clinical features and other diagnostic tests. The possibility to detect dysfunctional cortical circuits, to monitor the disease course, to probe the response to treatment, and to design novel neuromodulatory interventions in secondary dementia still represents a gap in the literature that needs to be explored.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- *Correspondence: Giuseppe Lanza,
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico – San Marco”, Catania, Italy
- Neurology Unit, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
12
|
Fisicaro F, Lanza G, D’Agate CC, Pennisi M, Cantone M, Pennisi G, Hadjivassiliou M, Bella R. Cerebral hemodynamic changes to transcranial Doppler sonography in celiac disease: A pilot study. Front Hum Neurosci 2022; 16:931727. [PMID: 36147295 PMCID: PMC9487999 DOI: 10.3389/fnhum.2022.931727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sonographic mesenteric pattern in celiac disease (CD) suggests a hyperdynamic circulation. Despite the well-known CD-related neurological involvement, no study has systematically explored the cerebral hemodynamics to transcranial Doppler sonography. Materials and methods Montreal Cognitive Assessment (MoCA) and 17-item Hamilton Depression Rating Scale (HDRS) were assessed in 15 newly diagnosed subjects with CD and 15 age-, sex-, and education-matched healthy controls. Cerebral blood flow (CBF) velocities and indices of resistivity (RI) and pulsatility (PI) from the middle cerebral artery (MCA), bilaterally, and the basilar artery (BA) were recorded. We also assessed cerebral vasomotor reactivity (CVR) through the breath-holding test (BHT). Results Worse scores of MoCA and HDRS were found in patients compared to controls. Although patients showed higher values of CBF velocity from MCA bilaterally compared to controls, both at rest and after BHT, no comparison reached a statistical significance, whereas after BHT both RI and PI from BA were significantly higher in patients. A significant negative correlation between both indices from BA and MoCA score were also noted. Conclusion These treatment-naïve CD patients may show some subtle CVR changes in posterior circulation, thus possibly expanding the spectrum of pathomechanisms underlying neuroceliac disease and in particular gluten ataxia. Subclinical identification of cerebrovascular pathology in CD may help adequate prevention and early management of neurological involvement.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- *Correspondence: Giuseppe Lanza,
| | - Carmela Cinzia D’Agate
- Gastroenterology and Endoscopy Unit, Policlinico University Hospital “G. Rodolico-San Marco”, Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital “G. Rodolico-San Marco”, Catania, Italy
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
14
|
Continuous but not intermittent theta burst stimulation decreases striatal dopamine release and cortical excitability. Exp Neurol 2022; 354:114106. [DOI: 10.1016/j.expneurol.2022.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022]
|
15
|
Lanza G, Cosentino FII, Lanuzza B, Tripodi M, Aricò D, Figorilli M, Puligheddu M, Fisicaro F, Bella R, Ferri R, Pennisi M. Reduced Intracortical Facilitation to TMS in Both Isolated REM Sleep Behavior Disorder (RBD) and Early Parkinson's Disease with RBD. J Clin Med 2022; 11:jcm11092291. [PMID: 35566417 PMCID: PMC9104430 DOI: 10.3390/jcm11092291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND a reduced intracortical facilitation (ICF), a transcranial magnetic stimulation (TMS) measure largely mediated by glutamatergic neurotransmission, was observed in subjects affected by isolated REM sleep behavior disorder (iRBD). However, direct comparison between iRBD and Parkinson's disease (PD) with RBD is currently lacking. METHODS resting motor threshold, contralateral cortical silent period, amplitude and latency of motor evoked potentials, short-interval intracortical inhibition, and intracortical facilitation (ICF) were recorded from 15 drug-naïve iRBD patients, 15 drug-naïve PD with RBD patients, and 15 healthy participants from the right First Dorsal Interosseous muscle. REM sleep atonia index (RAI), Mini Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Epworth Sleepiness Scale (ESS) were assessed. RESULTS Groups were similar for sex, age, education, and patients for RBD duration and RAI. Neurological examination, MMSE, ESS, and GDS were normal in iRBD patients and controls; ESS scored worse in PD patients, but with no difference between groups at post hoc analysis. Compared to controls, both patient groups exhibited a significantly decreased ICF, without difference between them. CONCLUSIONS iRBD and PD with RBD shared a reduced ICF, thus suggesting the involvement of glutamatergic transmission both in subjects at risk for degeneration and in those with an overt α-synucleinopathy.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Filomena Irene Ilaria Cosentino
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Debora Aricò
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Via Santa Sofia 78, 95125 Catania, Italy;
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
16
|
Salemi M, Lanza G, Mogavero MP, Cosentino FII, Borgione E, Iorio R, Ventola GM, Marchese G, Salluzzo MG, Ravo M, Ferri R. A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson's Disease. Int J Mol Sci 2022; 23:1535. [PMID: 35163455 PMCID: PMC8836138 DOI: 10.3390/ijms23031535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction. Certainly, the study of the transcriptome of the various RNAs plays a crucial role in the study of this neurodegenerative disease. In fact, the aim of this study was to evaluate the transcriptome in a cohort of subjects with PD compared with a control cohort. In particular we focused on mRNAs and long non-coding RNAs (lncRNA), using the Illumina NextSeq 550 DX System. Differential expression analysis revealed 716 transcripts with padj ≤ 0.05; among these, 630 were mRNA (coding protein), lncRNA, and MT_tRNA. Ingenuity pathway analysis (IPA, Qiagen) was used to perform the functional and pathway analysis. The highest statistically significant pathways were: IL-15 signaling, B cell receptor signaling, systemic lupus erythematosus in B cell signaling pathway, communication between innate and adaptive immune cells, and melatonin degradation II. Our findings further reinforce the important roles of mitochondria and lncRNA in PD and, in parallel, further support the concept of inverse comorbidity between PD and some cancers.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | | | - Filomena I. I. Cosentino
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Eugenia Borgione
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Roberta Iorio
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Giovanna Maria Ventola
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| | - Maria Ravo
- Genomix4Life Srl, 84081 Baronissi, Italy; (R.I.); (G.M.V.); (G.M.); (M.R.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (G.L.); (F.I.I.C.); (E.B.); (M.G.S.); (R.F.)
| |
Collapse
|
17
|
A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson's Disease. Int J Mol Sci 2022. [PMID: 35163455 DOI: 10.3390/ijms23031535.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The number of cases of PD is expected to double by 2030, representing a heavy burden on the healthcare system. Clinical symptoms include the progressive loss of dopaminergic neurons in the substantia nigra of the midbrain, which leads to striatal dopamine deficiency and, subsequently, causes motor dysfunction. Certainly, the study of the transcriptome of the various RNAs plays a crucial role in the study of this neurodegenerative disease. In fact, the aim of this study was to evaluate the transcriptome in a cohort of subjects with PD compared with a control cohort. In particular we focused on mRNAs and long non-coding RNAs (lncRNA), using the Illumina NextSeq 550 DX System. Differential expression analysis revealed 716 transcripts with padj ≤ 0.05; among these, 630 were mRNA (coding protein), lncRNA, and MT_tRNA. Ingenuity pathway analysis (IPA, Qiagen) was used to perform the functional and pathway analysis. The highest statistically significant pathways were: IL-15 signaling, B cell receptor signaling, systemic lupus erythematosus in B cell signaling pathway, communication between innate and adaptive immune cells, and melatonin degradation II. Our findings further reinforce the important roles of mitochondria and lncRNA in PD and, in parallel, further support the concept of inverse comorbidity between PD and some cancers.
Collapse
|
18
|
Kamble N, Bhattacharya A, Hegde S, Vidya N, Gothwal M, Yadav R, Pal PK. Cortical excitability changes as a marker of cognitive impairment in Parkinson's disease. Behav Brain Res 2022; 422:113733. [PMID: 34998797 DOI: 10.1016/j.bbr.2022.113733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Cognitive impairment of different severity with eventual progression to dementia in Parkinson's disease (PD) appears during the course of the disease. In this study, transcranial magnetic stimulation (TMS) was used to assess cortical excitability changes in PD patients with varying cognitive impairment. We aimed to identify the TMS parameters that could serve as a non-invasive marker of cognitive impairment in patients with PD. Consecutive PD patients were recruited in the study. Detailed neuropsychological assessment was carried out to identify PD without cognitive impairment (PD-nC), PD with mild cognitive impairment (PD-MCI) and PD with dementia (PDD). Twenty patients of PDD (2 females and 18 males), 20 PD-MCI (4 females and 16 males), 18 PD-nC (5 females, 13 males) and 18 healthy controls (4 females, and 14 males) were included in the study. All the participants underwent TMS with recording of resting motor threshold, central motor conduction time, silent period, short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). All the groups were age matched. The SICI was present in all; however, significantly greater inhibition was noted in PDD (Mean±SD; 0.11±0.08) followed by PD-MCI (0.31±0.17), PD-nC (0.49±0.26) and controls (0.61±0.23; p<0.001). The ICF was significantly reduced in PDD (Mean±SD; 0.15±0.18), PD-MCI (0.55±0.31), PD-nC (0.96±0.59), when compared to healthy controls (1.81±0.83; p<0.001). Patients with PD-nC, PD-MCI and PDD had graded reduction in ICF and increasing intracortical inhibition as the disease progressed from PD-nC through PD-MCI to PDD. This suggests progressive overactivity of GABAergic transmission, glutaminergic deficiency with consequent reduction of cholinergic transmission leading to dementia.
Collapse
Affiliation(s)
- Nitish Kamble
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Amitabh Bhattacharya
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Shantala Hegde
- Clinical Psychology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - N Vidya
- Clinical Psychology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Mohit Gothwal
- Clinical Psychology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Ravi Yadav
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Pramod Kumar Pal
- Departments of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
19
|
Gong SY, Shen Y, Gu HY, Zhuang S, Fu X, Wang QJ, Mao CJ, Hu H, Dai YP, Liu CF. Generalized EEG Slowing Across Phasic REM Sleep, Not Subjective RBD Severity, Predicts Neurodegeneration in Idiopathic RBD. Nat Sci Sleep 2022; 14:407-418. [PMID: 35299628 PMCID: PMC8923684 DOI: 10.2147/nss.s354063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Idiopathic rapid eye movement sleep behavior disorder (iRBD) is the prodromal marker of α-synuclein degeneration with markedly high predictive value. We aim to evaluate the value of electroencephalography (EEG) data during rapid eye movement (REM) sleep and subjective RBD severity in predicting the conversion to neurodegenerative diseases in iRBD patients. METHODS At the baseline, iRBD patients underwent clinical assessment and video-polysomnography (PSG). Relative spectral power for nine frequency bands during phasic and tonic REM sleep in three regions of interest, slow-to-fast ratios, clinical and PSG variables were estimated and compared between iRBD patients who converted to neurodegenerative diseases (iRBD-C) and iRBD patients who remained disease-free (iRBD-NC). Receiver operating characteristic (ROC) curves evaluated the predictive performance of slow-to-fast ratios, and subjective RBD severity as assessed with RBD Questionnaire-Hong Kong. RESULTS Twenty-two (33.8%) patients eventually developed neurodegenerative diseases. The iRBD-C group showed shorter total sleep time (p < 0.001), lower stage 2 sleep percentage (p = 0.044), more periodic leg-movement-related arousal index (p = 0.004), increased tonic chin electromyelographic activity (p = 0.040) and higher REM density in the third REM episode (p = 0.034) than the iRBD-NC group. EEG spectral power analyses revealed that iRBD phenoconverters showed significantly higher delta and lower alpha power, especially in central and occipital regions during the phasic REM state compared to the iRBD-NC group. Significantly higher slow-to-fast ratios were observed in a more generalized way during the phasic state in the iRBD-C group compared to the iRBD-NC group. ROC analyses of the slowing ratio in occipital areas during phasic REM sleep yielded an area under the curve of 0.749 (p = 0.001), while no significant predictive value of subjective RBD severity was observed. CONCLUSION Our study shows that EEG slowing, especially in a more generalized manner during the phasic period, may be a promising marker in predicting phenoconversion in iRBD, rather than subjective RBD severity.
Collapse
Affiliation(s)
- Si-Yi Gong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Han-Ying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Sheng Zhuang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiang Fu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Qiao-Jun Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hua Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yong-Ping Dai
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China.,Department of Neurology, Suqian First Hospital, Suqian, People's Republic of China
| |
Collapse
|
20
|
Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease. PLoS One 2021. [PMID: 34914787 DOI: 10.1371/journal.pone.0261373.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. METHODS Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. RESULTS The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. CONCLUSIONS Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called "gluten encephalopathy", which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.
Collapse
|
21
|
Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021. [PMID: 34942893 DOI: 10.3390/brainsci11121588.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
|
22
|
Figorilli M, Lanza G, Congiu P, Lecca R, Casaglia E, Mogavero MP, Puligheddu M, Ferri R. Neurophysiological Aspects of REM Sleep Behavior Disorder (RBD): A Narrative Review. Brain Sci 2021; 11:brainsci11121588. [PMID: 34942893 PMCID: PMC8699681 DOI: 10.3390/brainsci11121588] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
REM sleep without atonia (RSWA) is the polysomnographic (PSG) hallmark of rapid eye movement (REM) sleep behavior disorder (RBD), a feature essential for the diagnosis of this condition. Several additional neurophysiological aspects of this complex disorder have also recently been investigated in depth, which constitute the focus of this narrative review, together with RSWA. First, we describe the complex neural network underlying REM sleep and its muscle atonia, focusing on the disordered mechanisms leading to RSWA. RSWA is then described in terms of its polysomnographic features, and the methods (visual and automatic) currently available for its scoring and quantification are exposed and discussed. Subsequently, more recent and advanced neurophysiological features of RBD are described, such as electroencephalography during wakefulness and sleep, transcranial magnetic stimulation, and vestibular evoked myogenic potentials. The role of the assessment of neurophysiological features in the study of RBD is then carefully discussed, highlighting their usefulness and sensitivity in detecting neurodegeneration in the early or prodromal stages of RBD, as well as their relationship with other proposed biomarkers for the diagnosis, prognosis, and monitoring of this condition. Finally, a future research agenda is proposed to help clarify the many still unclear aspects of RBD.
Collapse
Affiliation(s)
- Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Patrizia Congiu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Rosamaria Lecca
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Elisa Casaglia
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Maria P. Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, 27100 Pavia, Italy;
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, 09042 Cagliari, Italy; (M.F.); (P.C.); (R.L.); (E.C.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-0935-936111
| |
Collapse
|
23
|
Clinical Neurophysiology, Neuroimaging, and Neuromodulation of Neuropsychiatric Disorders. J Pers Med 2021; 11:jpm11111193. [PMID: 34834545 PMCID: PMC8618947 DOI: 10.3390/jpm11111193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
|
24
|
Nikmanesh N, Sarani EM, Khazraei S, Petramfar P, Ostovan VR. Diagnostic accuracy of brain stem auditory evoked response in distinguishing drug-induced parkinsonism from Parkinson'sdisease. Neurophysiol Clin 2021; 51:524-532. [PMID: 34764016 DOI: 10.1016/j.neucli.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Brainstem auditory evoked response (BAER) is a non-invasive modality that can be used to investigate brainstem neuronal function in movement disorders. The differentiation between drug-induced parkinsonism (DIP) and Parkinson's disease (PD) can be very challenging. Although PD and DIP to some extent display similar clinical symptoms, the underlying pathophysiologic mechanisms are entirely different. Given these differences in pathogenesis, and the diagnostic utility of BAER for detecting brainstem function, BAER may help to distinguish between PD and DIP. This study aimed to assess the accuracy and predictive values of BAER parameters in differentiating DIP from PD. METHODS We prospectively studied143 participants classified within three groups, including 50 controls, 57 PD, and 36 DIP. BAER was performed on all patients in the study. Patients in the DIP group were followed up for at least one year after discontinuation of the causative drug and examined for final diagnosis. We compared BAER latencies of the three groups and measured sensitivity, specificity, predictive values, likelihood ratios, and accuracy of BAER in diagnosing DIP. RESULT Waves V, I-V, and III-V latencies were significantly prolonged among the PD patients compared to the DIP and the control group; however, there were no significant differences in BAER latencies between the DIP and the control group. Waves V and I-V latencies revealed the highest accuracy (86% and 79%, respectively) in distinguishing DIP from PD with high negative predictive value(89% and 83%, respectively) as well as a high negative likelihood ratio (0.2and 0.3, respectively). CONCLUSION This study showed that waves V and I-V latencies are significantly prolonged in PD patients compared to those with DIP, consistent with the proposed mechanisms of neurodegeneration in PD, particularly in the midbrain and pons. Consequently, BAER could be used as a useful diagnostic tool for differentiating DIP from PD.
Collapse
Affiliation(s)
- Najmeh Nikmanesh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Moghimi Sarani
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Khazraei
- Department of Psychiatry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Petramfar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
25
|
Di Lazzaro V, Bella R, Benussi A, Bologna M, Borroni B, Capone F, Chen KHS, Chen R, Chistyakov AV, Classen J, Kiernan MC, Koch G, Lanza G, Lefaucheur JP, Matsumoto H, Nguyen JP, Orth M, Pascual-Leone A, Rektorova I, Simko P, Taylor JP, Tremblay S, Ugawa Y, Dubbioso R, Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin Neurophysiol 2021; 132:2568-2607. [PMID: 34482205 DOI: 10.1016/j.clinph.2021.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a powerful tool to probe in vivo brain circuits, as it allows to assess several cortical properties such asexcitability, plasticity and connectivity in humans. In the last 20 years, TMS has been applied to patients with dementia, enabling the identification of potential markers of thepathophysiology and predictors of cognitive decline; moreover, applied repetitively, TMS holds promise as a potential therapeutic intervention. The objective of this paper is to present a comprehensive review of studies that have employed TMS in dementia and to discuss potential clinical applications, from the diagnosis to the treatment. To provide a technical and theoretical framework, we first present an overview of the basic physiological mechanisms of the application of TMS to assess cortical excitability, excitation and inhibition balance, mechanisms of plasticity and cortico-cortical connectivity in the human brain. We then review the insights gained by TMS techniques into the pathophysiology and predictors of progression and response to treatment in dementias, including Alzheimer's disease (AD)-related dementias and secondary dementias. We show that while a single TMS measure offers low specificity, the use of a panel of measures and/or neurophysiological index can support the clinical diagnosis and predict progression. In the last part of the article, we discuss the therapeutic uses of TMS. So far, only repetitive TMS (rTMS) over the left dorsolateral prefrontal cortex and multisite rTMS associated with cognitive training have been shown to be, respectively, possibly (Level C of evidence) and probably (Level B of evidence) effective to improve cognition, apathy, memory, and language in AD patients, especially at a mild/early stage of the disease. The clinical use of this type of treatment warrants the combination of brain imaging techniques and/or electrophysiological tools to elucidate neurobiological effects of neurostimulation and to optimally tailor rTMS treatment protocols in individual patients or specific patient subgroups with dementia or mild cognitive impairment.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kai-Hsiang S Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada; Division of Brain, Imaging& Behaviour, Krembil Brain Institute, Toronto, Canada
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig University Medical Center, Germany
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology IC, Oasi Research Institute-IRCCS, Troina, Italy
| | - Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | | | - Jean-Paul Nguyen
- Pain Center, clinique Bretéché, groupe ELSAN, Multidisciplinary Pain, Palliative and Supportive care Center, UIC 22/CAT2 and Laboratoire de Thérapeutique (EA3826), University Hospital, Nantes, France
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Swiss Huntington's Disease Centre, Siloah, Bern, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research, Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Universitat Autonoma Barcelona, Spain
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Patrik Simko
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Tremblay
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada; Royal Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021. [PMID: 34062843 DOI: 10.3390/nu13051530.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Celiac disease (CD) may present or be complicated by neurological and neuropsychiatric manifestations. Transcranial magnetic stimulation (TMS) probes brain excitability non-invasively, also preclinically. We previously demonstrated an intracortical motor disinhibition and hyperfacilitation in de novo CD patients, which revert back after a long-term gluten-free diet (GFD). In this cross-sectional study, we explored the interhemispheric excitability by transcallosal inhibition, which has never been investigated in CD. METHODS A total of 15 right-handed de novo, neurologically asymptomatic, CD patients and 15 age-matched healthy controls were screened for cognitive and depressive symptoms to the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively. TMS consisted of resting motor threshold, amplitude, latency, and duration of the motor evoked potentials, duration and latency of the contralateral silent period (cSP). Transcallosal inhibition was evaluated as duration and latency of the ipsilateral silent period (iSP). RESULTS MoCA and HDRS scored significantly worse in patients. The iSP and cSP were significantly shorter in duration in patients, with a positive correlation between the MoCA and iSP. CONCLUSIONS An intracortical and interhemispheric motor disinhibition was observed in CD, suggesting the involvement of GABA-mediated cortical and callosal circuitries. Further studies correlating clinical, TMS, and neuroimaging data are needed.
Collapse
|
27
|
Fisicaro F, Lanza G, D’Agate CC, Ferri R, Cantone M, Falzone L, Pennisi G, Bella R, Pennisi M. Intracortical and Intercortical Motor Disinhibition to Transcranial Magnetic Stimulation in Newly Diagnosed Celiac Disease Patients. Nutrients 2021; 13:nu13051530. [PMID: 34062843 PMCID: PMC8147364 DOI: 10.3390/nu13051530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) may present or be complicated by neurological and neuropsychiatric manifestations. Transcranial magnetic stimulation (TMS) probes brain excitability non-invasively, also preclinically. We previously demonstrated an intracortical motor disinhibition and hyperfacilitation in de novo CD patients, which revert back after a long-term gluten-free diet (GFD). In this cross-sectional study, we explored the interhemispheric excitability by transcallosal inhibition, which has never been investigated in CD. METHODS A total of 15 right-handed de novo, neurologically asymptomatic, CD patients and 15 age-matched healthy controls were screened for cognitive and depressive symptoms to the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively. TMS consisted of resting motor threshold, amplitude, latency, and duration of the motor evoked potentials, duration and latency of the contralateral silent period (cSP). Transcallosal inhibition was evaluated as duration and latency of the ipsilateral silent period (iSP). RESULTS MoCA and HDRS scored significantly worse in patients. The iSP and cSP were significantly shorter in duration in patients, with a positive correlation between the MoCA and iSP. CONCLUSIONS An intracortical and interhemispheric motor disinhibition was observed in CD, suggesting the involvement of GABA-mediated cortical and callosal circuitries. Further studies correlating clinical, TMS, and neuroimaging data are needed.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Carmela Cinzia D’Agate
- Gastroenterology and Endoscopy Unit, University Hospital “Policlinico G. Rodolico-San Marco”, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo 6, 93100 Caltanissetta, Italy;
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Instituto Nazionale Tumori-IRCCS “Fondazione G. Pascale”, Via Mariano Semmola 53, 80131 Napoli, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
28
|
Fisicaro F, Lanza G, Pennisi M, Vagli C, Cantone M, Pennisi G, Ferri R, Bella R. Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients 2021; 13:nu13020536. [PMID: 33562065 PMCID: PMC7916014 DOI: 10.3390/nu13020536] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
To date, interest in the role of coffee intake in the occurrence and course of age-related neurological and neuropsychiatric disorders has provided an inconclusive effect. Moreover, no study has evaluated mocha coffee consumption in subjects with mild vascular cognitive impairment and late-onset depression. We assessed the association between different quantities of mocha coffee intake over the last year and cognitive and mood performance in a homogeneous sample of 300 non-demented elderly Italian subjects with subcortical ischemic vascular disease. Mini Mental State Examination (MMSE), Stroop Colour-Word Interference Test (Stroop T), 17-items Hamilton Depression Rating Scalfe (HDRS), Activities of Daily Living (ADL), and Instrumental ADL were the outcome measures. MMSE, HDRS, and Stroop T were independently and significantly associated with coffee consumption, i.e., better scores with increasing intake. At the post-hoc analyses, it was found that the group with a moderate intake (two cups/day) had similar values compared to the heavy drinkers (≥three cups/day), with the exception of MMSE. Daily mocha coffee intake was associated with higher cognitive and mood status, with a significant dose-response association even with moderate consumption. This might have translational implications for the identification of modifiable factors for vascular dementia and geriatric depression.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (C.V.); (R.B.)
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo 6, 93100 Caltanissetta, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero 78, 94018 Troina, Italy;
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy; (C.V.); (R.B.)
| |
Collapse
|
29
|
Moderate Mocha Coffee Consumption Is Associated with Higher Cognitive and Mood Status in a Non-Demented Elderly Population with Subcortical Ischemic Vascular Disease. Nutrients 2021. [PMID: 33562065 DOI: 10.3390/nu13020536.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, interest in the role of coffee intake in the occurrence and course of age-related neurological and neuropsychiatric disorders has provided an inconclusive effect. Moreover, no study has evaluated mocha coffee consumption in subjects with mild vascular cognitive impairment and late-onset depression. We assessed the association between different quantities of mocha coffee intake over the last year and cognitive and mood performance in a homogeneous sample of 300 non-demented elderly Italian subjects with subcortical ischemic vascular disease. Mini Mental State Examination (MMSE), Stroop Colour-Word Interference Test (Stroop T), 17-items Hamilton Depression Rating Scalfe (HDRS), Activities of Daily Living (ADL), and Instrumental ADL were the outcome measures. MMSE, HDRS, and Stroop T were independently and significantly associated with coffee consumption, i.e., better scores with increasing intake. At the post-hoc analyses, it was found that the group with a moderate intake (two cups/day) had similar values compared to the heavy drinkers (≥three cups/day), with the exception of MMSE. Daily mocha coffee intake was associated with higher cognitive and mood status, with a significant dose-response association even with moderate consumption. This might have translational implications for the identification of modifiable factors for vascular dementia and geriatric depression.
Collapse
|
30
|
Lanza G, Fisicaro F, D’Agate CC, Ferri R, Cantone M, Falzone L, Pennisi G, Bella R, Hadjivassiliou M, Pennisi M. Preserved central cholinergic functioning to transcranial magnetic stimulation in de novo patients with celiac disease. PLoS One 2021; 16:e0261373. [PMID: 34914787 PMCID: PMC8675755 DOI: 10.1371/journal.pone.0261373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. METHODS Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. RESULTS The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. CONCLUSIONS Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called "gluten encephalopathy", which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- * E-mail:
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carmela Cinzia D’Agate
- Gastroenterology and Endoscopy Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Instituto Nazionale Tumori-IRCCS “Fondazione G. Pascale, Napoli, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|