1
|
Sharma R, Yadav K, Monga L, Gupta V, Yadav V. Identification of pivotal genes and pathways in Chorea-acanthocytosis using comprehensive bioinformatic analysis. PLoS One 2024; 19:e0309594. [PMID: 39292690 PMCID: PMC11410245 DOI: 10.1371/journal.pone.0309594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024] Open
Abstract
Chorea-acanthocytosis (ChAc), an autosomal recessive disorder, is associated with cognitive and behavioral abnormalities. Previous studies were focused around exploring the functional annotation of VPS13A gene in ChAc, whereas the genetic labyrinth underlying this disease and plausible drug targets were underexplored. In the present study, we have identified the pivotal genes and molecular pathways implicated in ChAc using comprehensive bioinformatics analysis. In our analysis we found 27 distinct genes in Homo sapiens linked to ChAc, out of which 15 were selected as candidate genes for enrichment analysis based on their Gene Ontology (GO) annotations and involvement in relevant molecular pathways. By constructing a Protein-Protein Interaction (PPI) network consisting of 26 nodes and 62 edges, we identified two gene modules. Subsequently, using the MCODE algorithm, we identified 6 hub genes-ATN1, JPH3, TBP, VPS13A, DMD, and HTT-as core candidates. These hub genes are primarily associated with processes such as neuron development and differentiation, the CAMKK-AMPK signaling cascade, ion transmembrane transport systems, and protein localization. Furthermore, using drug gene databank we identified 23 FDA-approved drugs that possess the propensity to target 3 out of the 6 identified hub genes. We believe that our findings could open promising avenues for potential therapeutic interventions in ChAc.
Collapse
Affiliation(s)
- Ravinder Sharma
- Faculty of Pharmaceutical Sciences, The ICFAI University, Baddi, Himachal Pradesh, India
| | - Kiran Yadav
- Faculty of Pharmaceutical Sciences, The ICFAI University, Baddi, Himachal Pradesh, India
| | - Leeza Monga
- Department of Clinical Research, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Vikas Gupta
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
2
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
3
|
Walker RH, Peikert K, Jung HH, Hermann A, Danek A. Neuroacanthocytosis Syndromes: The Clinical Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231210339. [PMID: 38090146 PMCID: PMC10714877 DOI: 10.1177/25152564231210339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 09/05/2024]
Abstract
The two very rare neurodegenerative diseases historically known as the "neuroacanthocytosis syndromes" are due to mutations of either VPS13A or XK. These are phenotypically similar disorders that affect primarily the basal ganglia and hence result in involuntary abnormal movements as well as neuropsychiatric and cognitive alterations. There are other shared features such as abnormalities of red cell membranes which result in acanthocytes, whose relationship to neurodegeneration is not yet known. Recent insights into the functions of these two proteins suggest dysfunction of lipid processing and trafficking at the subcellular level and may provide a mechanism for neuronal dysfunction and death, and potentially a target for therapeutic interventions.
Collapse
Affiliation(s)
- Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
| | - Hans H. Jung
- Department of Neurology, University and University Hospital Zürich, Zürich, Switzerland
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Adrian Danek
- Neurologische Klinik, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
4
|
Kaminska J, Soczewka P, Rzepnikowska W, Zoladek T. Yeast as a Model to Find New Drugs and Drug Targets for VPS13-Dependent Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23095106. [PMID: 35563497 PMCID: PMC9104724 DOI: 10.3390/ijms23095106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-acanthocytosis. The pathogenesis of these diseases is poorly understood, and no effective treatment is available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could be studied in model organisms, including yeast, where one VPS13 gene is present. In this review, we summarize advancements obtained using yeast. In recent studies, vps13Δ and vps13-I2749 yeast mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating calcineurin activity. In addition, vps13Δ suppression was achieved by using calcineurin inhibitors. The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1, CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing an increase in the intracellular iron content. Moreover, among the identified chemical suppressors were copper ionophores, which require a functional iron uptake system for activity, and flavonoids, which bind iron. These findings point at areas for further investigation in a higher eukaryotic model of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for these diseases.
Collapse
Affiliation(s)
- Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Piotr Soczewka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
- Correspondence:
| |
Collapse
|
5
|
Reichel F, Kräter M, Peikert K, Glaß H, Rosendahl P, Herbig M, Rivera Prieto A, Kihm A, Bosman G, Kaestner L, Hermann A, Guck J. Changes in Blood Cell Deformability in Chorea-Acanthocytosis and Effects of Treatment With Dasatinib or Lithium. Front Physiol 2022; 13:852946. [PMID: 35444561 PMCID: PMC9013823 DOI: 10.3389/fphys.2022.852946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Misshaped red blood cells (RBCs), characterized by thorn-like protrusions known as acanthocytes, are a key diagnostic feature in Chorea-Acanthocytosis (ChAc), a rare neurodegenerative disorder. The altered RBC morphology likely influences their biomechanical properties which are crucial for the cells to pass the microvasculature. Here, we investigated blood cell deformability of five ChAc patients compared to healthy controls during up to 1-year individual off-label treatment with the tyrosine kinase inhibitor dasatinib or several weeks with lithium. Measurements with two microfluidic techniques allowed us to assess RBC deformability under different shear stresses. Furthermore, we characterized leukocyte stiffness at high shear stresses. The results showed that blood cell deformability–including both RBCs and leukocytes - in general was altered in ChAc patients compared to healthy donors. Therefore, this study shows for the first time an impairment of leukocyte properties in ChAc. During treatment with dasatinib or lithium, we observed alterations in RBC deformability and a stiffness increase for leukocytes. The hematological phenotype of ChAc patients hinted at a reorganization of the cytoskeleton in blood cells which partly explains the altered mechanical properties observed here. These findings highlight the need for a systematic assessment of the contribution of impaired blood cell mechanics to the clinical manifestation of ChAc.
Collapse
Affiliation(s)
- Felix Reichel
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kräter
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alejandro Rivera Prieto
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Alexander Kihm
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Giel Bosman
- Department of Biochemistry, Radboud UMC, Nijmegen, Netherlands
| | - Lars Kaestner
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Max-Planck-Institut für die Physik des Lichts and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jochen Guck,
| |
Collapse
|
6
|
Peikert K, Hermann A, Danek A. XK-Associated McLeod Syndrome: Nonhematological Manifestations and Relation to VPS13A Disease. Transfus Med Hemother 2022; 49:4-12. [PMID: 35221863 PMCID: PMC8832239 DOI: 10.1159/000521417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/03/2021] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND McLeod syndrome (MLS) is an X-linked multisystemic progressive disorder caused by loss of function mutations in the XK gene. The rare blood group phenotype of MLS patients with absent Kx antigen requires the support of specialized transfusion institutions because of the risk of transfusion complications. Acanthocytosis of red blood cells occurs in almost all patients. Nonhematological manifestations of MLS are very similar to those of VPS13A disease (chorea-acanthocytosis), an autosomal-recessive condition. Their shared phenotype apart from acanthocytosis includes movement disorders such as chorea and dystonia, epilepsy, peripheral neuropathy, and muscle involvement, typically with creatine kinase (CK) elevation, cardiomyopathy included. SUMMARY In this review, we describe the nonhematological manifestations of MLS in comparison with those of VPS13A disease. While there are many similarities, differences such as mode of inheritance, sex distribution, age at manifestation, severity of heart involvement, frequency of feeding dystonia or of involuntary head drops may help to distinguish these disorders in the clinic. Immunohematological demonstration of the McLeod-Kell phenotype or detection of pathogenic mutations of XK (or VPS13A, respectively) is the gold standard for distinction. "Neuroacanthocytosis" was often used as an overarching term, but is potentially misleading, as the term does not refer to a defined disease entity. Its use, if continued, must not prevent clinicians to seek a final diagnosis on the basis of molecular findings. The clinical similarity of MLS and VPS13A disease has long suggested some shared pathophysiology. Evidence for molecular interaction between XK, the McLeod protein, and chorein, the VPS13A gene product, has recently been put forward: XK forms a complex with chorein/VPS13A, a bulk lipid transporter located at various membrane contact sites. The exact role of XK in this complex needs to be further elucidated. Impairment of bulk lipid transport appears as the common denominator of both MLS and VPS13A disease. A variety of further conditions may in time be added to the "bulk lipid transport diseases," such as the recently recognized disorders caused by mutations in the VPS13B, VPS13C, and VPS13D genes. KEY MESSAGES (1) Patients diagnosed with the rare red cell McLeod phenotype (McLeod syndrome, MLS) require interdisciplinary collaboration of transfusion medicine specialists, neurologists, and cardiologists for both their hematological and nonhematological disease manifestations. (2) The phenotypical similarity of MLS and VPS13A disease, often leading to either confusion or insufficient diagnostic depth (under the label of "neuroacanthocytosis"), is based on interaction of the respective proteins, XK and chorein, within the cellular machinery for bulk lipid transport. (3) Overall, the term "bulk lipid transport diseases" seems useful for further research on a group of conditions that may not only share pathophysiology, but may also share treatment approaches.
Collapse
Affiliation(s)
- Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- DZNE, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
7
|
Adaptative Up-Regulation of PRX2 and PRX5 Expression Characterizes Brain from a Mouse Model of Chorea-Acanthocytosis. Antioxidants (Basel) 2021; 11:antiox11010076. [PMID: 35052580 PMCID: PMC8772732 DOI: 10.3390/antiox11010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023] Open
Abstract
The peroxiredoxins (PRXs) constitute a ubiquitous antioxidant. Growing evidence in neurodegenerative disorders such as Parkinson’s disease (PD) or Alzheimer’s disease (AD) has highlighted a crucial role for PRXs against neuro-oxidation. Chorea-acanthocytosis/Vps13A disease (ChAc) is a devastating, life-shortening disorder characterized by acanthocytosis, neurodegeneration and abnormal proteostasis. We recently developed a Vps13a−/− ChAc-mouse model, showing acanthocytosis, neurodegeneration and neuroinflammation which could be restored by LYN inactivation. Here, we show in our Vps13a−/− mice protein oxidation, NRF2 activation and upregulation of downstream cytoprotective systems NQO1, SRXN1 and TRXR in basal ganglia. This was associated with upregulation of PRX2/5 expression compared to wild-type mice. PRX2 expression was age-dependent in both mouse strains, whereas only Vps13a−/− PRX5 expression was increased independent of age. LYN deficiency or nilotinib-mediated LYN inhibition improved autophagy in Vps13a−/− mice. In Vps13a−/−; Lyn−/− basal ganglia, absence of LYN resulted in reduced NRF2 activation and down-regulated expression of PRX2/5, SRXN1 and TRXR. Nilotinib treatment of Vps13a−/− mice reduced basal ganglia oxidation, and plasma PRX5 levels, suggesting plasma PRX5 as a possible ChAc biomarker. Our data support initiation of therapeutic Lyn inhibition as promptly as possible after ChAc diagnosis to minimize development of irreversible neuronal damage during otherwise inevitable ChAc progression.
Collapse
|
8
|
Rabe A, Kihm A, Darras A, Peikert K, Simionato G, Dasanna AK, Glaß H, Geisel J, Quint S, Danek A, Wagner C, Fedosov DA, Hermann A, Kaestner L. The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib. Biomolecules 2021; 11:biom11050727. [PMID: 34066168 PMCID: PMC8151862 DOI: 10.3390/biom11050727] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disease with deformed red blood cells (RBCs), so-called acanthocytes, as a typical marker of the disease. Erythrocyte sedimentation rate (ESR) was recently proposed as a diagnostic biomarker. To date, there is no treatment option for affected patients, but promising therapy candidates, such as dasatinib, a Lyn-kinase inhibitor, have been identified. Methods: RBCs of two ChAc patients during and after dasatinib treatment were characterized by the ESR, clinical hematology parameters and the 3D shape classification in stasis based on an artificial neural network. Furthermore, mathematical modeling was performed to understand the contribution of cell morphology and cell rigidity to the ESR. Microfluidic measurements were used to compare the RBC rigidity between ChAc patients and healthy controls. Results: The mechano-morphological characterization of RBCs from two ChAc patients in an off-label treatment with dasatinib revealed differences in the ESR and the acanthocyte count during and after the treatment period, which could not directly be related to each other. Clinical hematology parameters were in the normal range. Mathematical modeling indicated that RBC rigidity is more important for delayed ESR than cell shape. Microfluidic experiments confirmed a higher rigidity in the normocytes of ChAc patients compared to healthy controls. Conclusions: The results increase our understanding of the role of acanthocytes and their associated properties in the ESR, but the data are too sparse to answer the question of whether the ESR is a suitable biomarker for treatment success, whereas a correlation between hematological and neuronal phenotype is still subject to verification.
Collapse
Affiliation(s)
- Antonia Rabe
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany;
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Alexander Kihm
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Alexis Darras
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Greta Simionato
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany
| | - Anil Kumar Dasanna
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (D.A.F.)
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
| | - Jürgen Geisel
- Central Laboratory, Saarland University Medical Centre, 66424 Homburg, Germany;
| | - Stephan Quint
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Cysmic GmbH, 66123 Saarbrücken, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität, 81366 Munich, Germany;
| | - Christian Wagner
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Dmitry A. Fedosov
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany; (A.K.D.); (D.A.F.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany; (K.P.); (H.G.); (A.H.)
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
- DZNE, German Center for Neurodegenerative Diseases, Research Site Rostock/Greifswald, 18051 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18051 Rostock, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66424 Homburg, Germany;
- Experimental Physics, Saarland University, 66123 Saarbruecken, Germany; (A.K.); (A.D.); (G.S.); (S.Q.); (C.W.)
- Correspondence: ; Tel.: +49-681-302-2417
| |
Collapse
|