1
|
Adam K, Butler SC, Workman CJ, Vignali DAA. Advances in LAG3 cancer immunotherapeutics. Trends Cancer 2025; 11:37-48. [PMID: 39603977 DOI: 10.1016/j.trecan.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Cancer treatment has entered the age of immunotherapy. Immune checkpoint inhibitor (ICI) therapy has shown robust therapeutic potential in clinical practice, with significant improvements in progression-free survival (PFS) and overall survival (OS). Recently, checkpoint blockade of the lymphocyte activation gene 3 (LAG3) inhibitory receptor (IR) in combination with programmed death protein 1 (PD1) inhibition has been FDA approved in patients with advanced melanoma. This has encouraged the clinical evaluation of new LAG3-directed biologics in combination with other checkpoint inhibitors. Several of these studies are evaluating bispecific antibodies that target exhausted T (TEX) cells expressing multiple IRs. This review discusses the current understanding of LAG3 in regulating antitumor immunity and the ongoing clinical testing of LAG3 inhibition in cancer.
Collapse
Affiliation(s)
- Kieran Adam
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel C Butler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Mao C, Xiong A, Qian J, Wang W, Liu Y, Zhang T, Wu Z, Ni H, Lu J, Long S, Zhao L, Chen Y, Zhou C, Xu N. Dual inhibition of LAG-3 and PD-1 with IBI110 and sintilimab in advanced solid tumors: the first-in-human phase Ia/Ib study. J Hematol Oncol 2024; 17:132. [PMID: 39736787 DOI: 10.1186/s13045-024-01651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Co-inhibition of immune checkpoints lymphocyte-activation gene 3 (LAG-3) and PD-1 is believed to enhance cancer immunotherapy through synergistic effects. Herein, we evaluate the safety and efficacy of IBI110 (anti-LAG-3 antibody) with sintilimab (an anti-PD-1 antibody) in Chinese patients with advanced solid tumors. METHODS In this open-label phase I study, phase Ia dose escalation of IBI110 monotherapy and phase Ib combination dose escalation of IBI110 plus sintilimab were conducted in patients with advanced solid tumors. Additionally, phase Ib combination dose expansion of IBI110 plus sintilimab and chemotherapy was conducted in previously untreated, advanced squamous non-small cell lung cancer (sqNSCLC) and HER-2 negative gastric cancer (GC). In phase Ia dose escalation, patients received IBI110 monotherapy at 0.01/0.1/0.3/1/3/10/20 mg/kg Q3W. In phase Ib dose escalation, patients received IBI110 at 0.3/0.7/1.5/3/5/8/10 mg/kg Q3W plus sintilimab 200 mg Q3W. In phase Ib combination dose expansion, patients received IBI110 at recommended phase 2 dose (RP2D) plus sintilimab 200 mg Q3W and chemotherapy. The primary endpoints were safety, tolerability and efficacy including objective response rate (ORR), disease control rate (DCR), duration of response (DoR), progression-free survival (PFS) assessed by RECIST v1.1 and overall survival (OS). The secondary endpoints included pharmacokinetics, pharmacodynamics and immunogenicity. RESULTS In phase Ia dose escalation (n = 28), treatment-related adverse events (TRAEs) occurred in 67.9% patients and grade ≥ 3 TRAEs occurred in 21.4% patients. In phase Ib combination dose escalation (n = 45), TRAEs occurred in 75.6% patients and grade ≥ 3 TRAEs occurred in 22.2% patients. No dose-limiting toxicity (DLT) was observed. The most common TRAE was anemia (17.9%, including 3.6% ≥ G3) in phase Ia dose escalation of IBI110 monotherapy (n = 28), aspartate aminotransferase increased (28.9%, all G1-G2) in phase Ib dose escalation of IBI110 plus sintilimab (n = 45), anemia (70.0%, all G1-G2) in phase Ib dose expansion in sqNSCLC (n = 20), and neutrophil count decreased (64.7%, including 17.6%≥ G3) in phase Ib dose expansion in GC (n = 17). The RP2D of IBI110 was determined at 200 mg (3 mg/kg) Q3W. ORR in phase Ia/Ib dose escalation was 3.6% with IBI110 monotherapy and 14% with IBI110 plus sintilimab. In phase Ib combination dose expansion of IBI110 plus sintilimab and chemotherapy, unconfirmed and confirmed ORR in sqNSCLC (n = 20) was 80.0% (95% CI, 56.3-94.3) and 75.0% (95% CI, 50.9-91.3), respectively and in GC (n = 17) was 88.2% (95% CI, 63.6-98.5) and 70.6% (95% CI, 44.0-89.7), respectively. CONCLUSIONS IBI110 monotherapy and in combination with sintilimab were well-tolerated in Chinese patients with advanced solid tumors. Encouraging efficacy of IBI110 in combination with sintilimab and chemotherapies was observed in sqNSCLC and GC. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04085185.
Collapse
Affiliation(s)
- Chenyu Mao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Xiong
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiong Qian
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Ying Liu
- Henan Cancer Hospital, Zhengzhou, China
| | - Tao Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihai Wu
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Haiqing Ni
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Jia Lu
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Sixiang Long
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Li Zhao
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Yuling Chen
- Innovent Biologics (Suzhou) Co., Ltd., Suzhou, China
| | - Caicun Zhou
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Nong Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Swede H, Ridwan SM, Strandberg J, Salner AL, Sporn JR, Kuo L, Ru K, Smilowitz HM. Baseline sLAG-3 levels in Caucasian and African-American breast cancer patients. Breast Cancer Res Treat 2024; 208:193-200. [PMID: 39230627 DOI: 10.1007/s10549-024-07455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Worse survival persists for African-Americans (AA) with breast cancer compared to other race/ethnic groups despite recent improvements for all. Unstudied in outcomes disparities to date is soluble LAG-3 (sLAG-3), cleaved from the LAG-3 immune checkpoint receptor which is a proposed target for deactivation in emerging immunotherapies due to its prominent immunosuppressive function in the tumoral microenvironment. A prior study has found that lower sLAG-3 baseline level was associated with poor outcomes. METHODS In a cross-sectional study of 95 patients with primary breast cancer (n = 58 Caucasian, n = 37 AA), we measured sLAG-3 (ELISA pg/ml) in pre-treatment blood samples using the non-parametric Mann-Whitney u-Test for independent samples, and, calculated Pearson r correlation coefficients of sLAG-3 with circulating cytokines by race. RESULTS Mean sLAG-3 level was lower in AA compared to Caucasian patients (1377.6 vs 3690.3, P = .002), and in patients with triple-negative breast cancer (TNBC) compared to those with non-TNBC malignancies (P = .02). When patients with TNBC tumors were excluded from analyses, the difference in sLAG-3 level between AA (n = 21) and Caucasian patients (n = 40) substantially remained (1937.4 vs 4182.4, P = .06). Among Caucasian patients, sLAG-3 was correlated with IL-6, IL-8 and IL-10 (r = .69, P < .001; r = .70, P < .001; and, r = .46, P = .01; respectively). For AA patients, sLAG-3 was correlated only with IL-6 (r = .37, P = .03). CONCLUSIONS We present the first report that African-American breast cancer patients might have comparatively low pre-treatment sLAG-3 levels, independent of TNBC status, along with reduced co-expression with circulating cytokines. The mechanistic and prognostic role of cleaved LAG-3, particularly in disparate outcomes, remains to be elucidated.
Collapse
Affiliation(s)
- Helen Swede
- Department of Public Health Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jillian Strandberg
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew L Salner
- Cancer Center, Hartford Hospital, Hartford HealthCare, Hartford, CT, USA
| | - Jonathan R Sporn
- Yale Smilow Cancer Program, Saint Francis Hospital, Hartford, CT, USA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Karen Ru
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Martínez-Pérez A, Granda-Díaz R, Aguilar-García C, Sordo-Bahamonde C, Gonzalez S. Deciphering LAG-3: unveiling molecular mechanisms and clinical advancements. Biomark Res 2024; 12:126. [PMID: 39425148 PMCID: PMC11487938 DOI: 10.1186/s40364-024-00671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Treatment based on immune checkpoint blockade has revolutionized cancer therapy. Despite the remarkable success achieved and the preclinical development of multiple checkpoint inhibitors targeting other checkpoints, only antibodies targeting the PD-1/PD-L1 axis and CTLA-4 have been approved for patient treatment, especially in solid tumors. Currently, with the approval of relatlimab, a LAG-3 blocking antibody, a third player, has been used in the fight against cancer. The endorsement of relatlimab marks a significant milestone in cancer immunotherapy, opening new avenues for combination therapies and enhancing treatment outcomes. However, the complex biology of LAG-3 may hinder its full development as a therapeutic alternative. In this review, we provide in-depth insight into the biology of LAG-3 and its current and future development in cancer treatment.
Collapse
Affiliation(s)
- Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
5
|
Nie J, Qin X, Tao X, Huang J. Exploring the molecular landscape of lymphocyte activation gene-3: A literature review. Medicine (Baltimore) 2024; 103:e39622. [PMID: 39331884 PMCID: PMC11441911 DOI: 10.1097/md.0000000000039622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/16/2024] [Indexed: 09/29/2024] Open
Abstract
Molecular structure and cellular distribution of lymphocyte activation gene-3 (LAG-3) have been studied extensively since 1990. However, several unresolved questions remain. It is well-established that LAG-3 plays a significant role in maintaining immune homeostasis. The presence of deficiencies in LAG-3 has been observed to be linked with autoimmune disorders, whereas the excessive expression of LAG-3 within the tumor microenvironment hinders immune responses, particularly those mediated by lymphocytes, thereby facilitating immune evasion. Consequently, investigations into these 2 aspects have become a prominent focus in both fundamental and clinical research. The objective of this review is to examine the functions and molecular characteristics of LAG-3, as well as its current clinical applications in the context of tumor immune escape and autoimmune disease. The ultimate aim is to explore and propose novel immune therapy approach.
Collapse
Affiliation(s)
- Jiaqi Nie
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Qin
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Tao
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Huang
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
7
|
Botticelli A, Cirillo A, d'Amati G, Di Gioia C, Corsi A, Della Rocca C, Santini D, Carletti R, Pisano A, Polimeni A, De Vincentiis M, Valentini V, di Cristofano C, Romeo U, Cerbelli E, Messineo D, De Felice F, Leopizzi M, Cerbelli B. The role of CD73 in predicting the response to immunotherapy in head and neck cancer patients. Pathol Res Pract 2024; 260:155415. [PMID: 38996615 DOI: 10.1016/j.prp.2024.155415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 07/14/2024]
Abstract
Immunotherapy has a crucial role in the treatment of recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). However, only a small percentage of patients achieve long-term benefit in terms of overall response and survival. It was shown that HNSCC has an immunosuppressive microenvironment due to high levels of regulatory T cells and immunosuppressive molecules, such as LAG3 and CD73. The aim of our study was to investigate if the expression of CD73 by neoplastic and immune cells could affect the efficacy of anti-PD-1 immunotherapy. We reviewed data from 50 patients with R/M HNSCC receiving first line immunotherapy with or without chemotherapy based on a combined positive score (CPS). CD73 expression by cancer and immune cells was evaluated on pre-treatment and the percentage of stained cells was recorded. We analysed the association between CD73 expression on neoplastic and immune cells and early progression (EP), defined as progression occurring within 3 months. In 88 % of patients the primary tumour site was in the oral cavity or larynx. All patients received pembrolizumab associated in 40 % of cases to chemotherapy. CD73 was positive in 82 % and 96 % of cases on neoplastic and immune cells, respectively. The median value of CD73 was 32 % for neoplastic cells and 10 % for the immune ones. We observed a significant association between the CD73 expression on neoplastic cells over the median value and EP disease. We didn't record a correlation between the expression of CD73 on immune cells and early progression. Our findings suggest that higher expression of CD73 on neoplastic cells could predict resistance to immunotherapy in patients with CPS positive R/M HNSCC. The addition of this biomarker to routine evaluation of CPS could help to select the patients primary resistant to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy; Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, Rome 00161, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Alessandro Corsi
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Daniele Santini
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Annalinda Pisano
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Antonella Polimeni
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Marco De Vincentiis
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Valentino Valentini
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Claudio di Cristofano
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Umberto Romeo
- Odontostomatological and Maxillo-Facial Science, 'Sapienza' University of Rome, Rome 00185, Italy
| | - Edoardo Cerbelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, Rome 00161, Italy
| | - Daniela Messineo
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00161, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy
| | - Bruna Cerbelli
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Roma 00185, Italy.
| |
Collapse
|
8
|
Pitts SC, Schlom J, Donahue RN. Soluble immune checkpoints: implications for cancer prognosis and response to immune checkpoint therapy and conventional therapies. J Exp Clin Cancer Res 2024; 43:155. [PMID: 38822401 PMCID: PMC11141022 DOI: 10.1186/s13046-024-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Longitudinal sampling of tumor tissue from patients with solid cancers, aside from melanoma and a few other cases, is often unfeasible, and thus may not capture the plasticity of interactions between the tumor and immune system under selective pressure of a given therapy. Peripheral blood analyses provide salient information about the human peripheral immunome while offering technical and practical advantages over traditional tumor biopsies, and should be utilized where possible alongside interrogation of the tumor. Some common blood-based biomarkers used to study the immune response include immune cell subsets, circulating tumor DNA, and protein analytes such as cytokines. With the recent explosion of immune checkpoint inhibitors (ICI) as a modality of treatment in multiple cancer types, soluble immune checkpoints have become a relevant area of investigation for peripheral immune-based biomarkers. However, the exact functions of soluble immune checkpoints and their roles in cancer for the most part remain unclear. This review discusses current literature on the production, function, and expression of nine soluble immune checkpoints - sPD-L1, sPD-1, sCTLA4, sCD80, sTIM3, sLAG3, sB7-H3, sBTLA, and sHVEM - in patients with solid tumors, and explores their role as biomarkers of response to ICI as well as to conventional therapies (chemotherapy, radiotherapy, targeted therapy, and surgery) in cancer patients.
Collapse
Affiliation(s)
- Stephanie C Pitts
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Mukherjee P, Zhou X, Galli S, Davidson B, Zhang L, Ahn J, Aljuhani R, Benicky J, Ailles L, Pomin VH, Olsen M, Goldman R. Aspartate β-Hydroxylase Is Upregulated in Head and Neck Squamous Cell Carcinoma and Regulates Invasiveness in Cancer Cell Models. Int J Mol Sci 2024; 25:4998. [PMID: 38732216 PMCID: PMC11084744 DOI: 10.3390/ijms25094998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Aspartate β-hydroxylase (ASPH) is a protein associated with malignancy in a wide range of tumors. We hypothesize that inhibition of ASPH activity could have anti-tumor properties in patients with head and neck cancer. In this study, we screened tumor tissues of 155 head and neck squamous cell carcinoma (HNSCC) patients for the expression of ASPH using immunohistochemistry. We used an ASPH inhibitor, MO-I-1151, known to inhibit the catalytic activity of ASPH in the endoplasmic reticulum, to show its inhibitory effect on the migration of SCC35 head and neck cancer cells in cell monolayers and in matrix-embedded spheroid co-cultures with primary cancer-associated fibroblast (CAF) CAF 61137 of head and neck origin. We also studied a combined effect of MO-I-1151 and HfFucCS, an inhibitor of invasion-blocking heparan 6-O-endosulfatase activity. We found ASPH was upregulated in HNSCC tumors compared to the adjacent normal tissues. ASPH was uniformly high in expression, irrespective of tumor stage. High expression of ASPH in tumors led us to consider it as a therapeutic target in cell line models. ASPH inhibitor MO-I-1151 had significant effects on reducing migration and invasion of head and neck cancer cells, both in monolayers and matrix-embedded spheroids. The combination of the two enzyme inhibitors showed an additive effect on restricting invasion in the HNSCC cell monolayers and in the CAF-containing co-culture spheroids. We identify ASPH as an abundant protein in HNSCC tumors. Targeting ASPH with inhibitor MO-I-1151 effectively reduces CAF-mediated cellular invasion in cancer cell models. We propose that the additive effect of MO-I-1151 with HfFucCS, an inhibitor of heparan 6-O-endosulfatases, on HNSCC cells could improve interventions and needs to be further explored.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Xin Zhou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Biotechnology Program, Northern Virginia Community College, Manassas, VA 20109, USA
| | - Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Bruce Davidson
- Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, DC 20057, USA
| | - Lihua Zhang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Reem Aljuhani
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA;
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy Glendale Campus, Midwestern University, Glendale, AZ 85308, USA
- Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL 60515, USA
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
10
|
Gelibter A, Asquino A, Strigari L, Zizzari IG, Tuosto L, Scirocchi F, Pace A, Siringo M, Tramontano E, Bianchini S, Bellati F, Botticelli A, Paoli D, Santini D, Nuti M, Rughetti A, Napoletano C. CD137 + and regulatory T cells as independent prognostic factors of survival in advanced non-oncogene addicted NSCLC patients treated with immunotherapy as first-line. J Transl Med 2024; 22:329. [PMID: 38570798 PMCID: PMC10993529 DOI: 10.1186/s12967-024-05142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), administered alone or combined with chemotherapy, are the standard of care in advanced non-oncogene addicted Non-Small Cell Lung Cancer (NSCLC). Despite these treatments' success, most long-term survival benefit is restricted to approximately 20% of patients, highlighting the need to identify novel biomarkers to optimize treatment strategies. In several solid tumors, immune soluble factors, the activatory CD137+ Tcells, and the immunosuppressive cell subsets Tregs and MDSCs (PMN(Lox1+)-MDSC and M-MDSCs) correlated with responses to ICIs and clinical outcomes thus becoming appealing predictive and prognostic factors. This study investigated the role of distinct CD137+ Tcell subsets, Tregs, MDSCs, and immune-soluble factors in NSCLC patients as possible biomarkers. METHODS The levels of T cells, MDSCs and soluble factors were evaluated in 89 metastatic NSCLC patients who underwent ICIs as first- or second-line treatment. T cell analysis was performed by cytoflurimetry evaluating Tregs and different CD137+ Tcell subsets also combined with CD3+, CD8+, PD1+, and Ki67+ markers. Circulating cytokines and immune checkpoints were also evaluated by Luminex analysis. All these parameters were correlated with several clinical factors (age, sex, smoking status, PS and TPS), response to therapy, PFS , and OS . The analyses were conducted in the overall population and in patients treated with ICIs as first-line (naïve patients). RESULTS In both groups of patients, high levels of circulating CD137+ and CD137+PD1+ T cells (total, CD4 and CD8) and the soluble factor LAG3 positively correlated with response to therapy. In naïve patients, PMN(Lox1+)-MDSCs negatively correlated with clinical response, and a high percentage of Tregs was associated with favorable survival. Moreover, the balance between Treg/CD137+ Tcells or PMN(Lox1+)-MDSC/CD137+ Tcells was higher in non-responding patients and was associated with poor survival. CD137+ Tcells and Tregs resulted as two positive independent prognostic factors. CONCLUSION High levels of CD137+, CD137+PD1+ Tcells and sLAG3 could predict the response to ICIs in NSCLC patients independently by previous therapy. Combining the evaluation of CD137+ Tcells and Tregs also as Treg/CD137+ T cells ratio it is possible to identify naive patients with longer survival.
Collapse
Affiliation(s)
- Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Angela Asquino
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliera-Universitaria Di Bologna, 40138, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Lucrezia Tuosto
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Angelica Pace
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marco Siringo
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Elisa Tramontano
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Serena Bianchini
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Filippo Bellati
- Department of Medical and Surgical Sciences and Translational Medicine, Sant'Andrea University Hospital, Sapienza University of Rome, Via Di Grottarossa 1035, 00189, Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Daniele Santini
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
11
|
Kgokolo MCM, Malinga NZ, Steel HC, Meyer PWA, Smit T, Anderson R, Rapoport BL. Transforming growth factor-β1 and soluble co-inhibitory immune checkpoints as putative drivers of immune suppression in patients with basal cell carcinoma. Transl Oncol 2024; 42:101867. [PMID: 38308919 PMCID: PMC10847768 DOI: 10.1016/j.tranon.2023.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024] Open
Abstract
The current study compared the levels and possible associations between systemic soluble immune checkpoints (sICPs, n = 17) and a group of humoral modulators of immune suppressor cells (n = 7) in a cohort of patients with basal cell carcinoma (BCC, n = 40) and a group of healthy control subjects (n = 20). The seven humoral modulators of immunosuppressor cells were represented by the enzymes, arginase 1 and fibroblast activation protein (FAP), the chemokine, RANTES (CCL5) and the cytokines, interleukin-10 and transforming growth factor-β1 (TGF-β1), as well as the M2-type macrophage markers, soluble CD163 (sCD163) and sCD206. The plasma levels of six co-inhibitory sICPs, sCTLA-4, sLAG-3, sPD-1, sPD-L1, sTIM-3 and sPD-L2 were significantly elevated in the cohort of BCC patients (p<0.001-p<0.00001), while that of sBTLA was significantly decreased (p<0.006). Of the co-stimulatory sICPs, sCD27 and sGITR were significantly increased (p<0.0002 and p<0.0538) in the cohort of BCC patients, while the others were essentially comparable with those of the control participants; of the dual active sICPs, sHVEM was significantly elevated (p<0.00001) and TLR2 comparable with the control group. A correlation heat map revealed selective, strong associations of TGF-β1 with seven co-stimulatory (z = 0.618468-0.768131) and four co-inhibitory (z = 0.674040-0.808365) sICPs, as well as with sTLR2 (z = 0.696431). Notwithstanding the association of BCC with selective elevations in the levels of a large group of co-inhibitory sICPs, our novel findings also imply the probable involvement of TGF-β1 in driving immunosuppression in this malignancy, possibly via activation of regulatory T cells. Notably, these abnormalities were present in patients with either newly diagnosed or recurrent disease.
Collapse
Affiliation(s)
- Mahlatse C M Kgokolo
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa.
| | - Nonkululeko Z Malinga
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Pieter W A Meyer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bernardo L Rapoport
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa.
| |
Collapse
|
12
|
Gorgulho J, Roderburg C, Beier F, Bokemeyer C, Brümmendorf TH, Loosen SH, Luedde T. Soluble lymphocyte activation gene-3 (sLAG3) and CD4/CD8 ratio dynamics as predictive biomarkers in patients undergoing immune checkpoint blockade for solid malignancies. Br J Cancer 2024; 130:1013-1022. [PMID: 38233492 PMCID: PMC10951205 DOI: 10.1038/s41416-023-02558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The search for biomarkers to identify suitable candidates for immune checkpoint inhibitor (ICI) therapy remains ongoing. We evaluate how soluble levels of the next generation immune checkpoint Lymphocyte Activation Gene-3 (sLAG-3) and its association with circulating T lymphocyte subsets could pose as a novel biomarker to predict outcome to ICI therapy. METHODS Circulating levels of sLAG3 were analyzed using multiplex immunoassay in n = 84 patients undergoing ICI therapy for advanced solid cancer, accompanied by flow cytometry analyses of peripheral blood mononuclear cells (PBMCs). RESULTS Uni- and multivariate analysis shows that patients with higher sLAG3 concentrations before ICI therapy had a significantly impaired progression-free (PFS) and overall survival (OS) (HRPFS: 1.005 [95%CI: 1.000-1.009], p = 0.039; HROS: 1.006 [95%CI: 1.001-1.011], p = 0.015). The CD4/CD8 cell ratio and its dynamics during therapy were strong predictors of PFS and OS with patients with a decreasing ratio between baseline and after 1-2 cycles having an improved median OS compared to patients with increasing values (p = 0.012, HR: 3.32). An immunological score combining sLAG3 and the CD4/CD8 ratio showed the highest predictive potential (HROS: 10.3). CONCLUSION Pending prospective validation, sLAG3 and correlating circulating T-cell subsets can be used as a non-invasive predictive marker to predict outcome to ICI therapy to help identifying ideal ICI candidates in the future.
Collapse
Affiliation(s)
- Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Fabian Beier
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Tim H Brümmendorf
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany.
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany.
| |
Collapse
|
13
|
Ueda K, Uemura K, Ito N, Sakai Y, Ohnishi S, Suekane H, Kurose H, Hiroshige T, Chikui K, Nishihara K, Nakiri M, Suekane S, Ogasawara S, Yano H, Igawa T. Soluble Immune Checkpoint Molecules as Predictors of Efficacy in Immuno-Oncology Combination Therapy in Advanced Renal Cell Carcinoma. Curr Oncol 2024; 31:1701-1712. [PMID: 38668032 PMCID: PMC11049572 DOI: 10.3390/curroncol31040129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Immuno-oncology (IO) combination therapy is the first-line treatment for advanced renal cell carcinoma (RCC). However, biomarkers for predicting the response to IO combination therapy are lacking. Here, we investigated the association between the expression of soluble immune checkpoint molecules and the therapeutic efficacy of IO combination therapy in advanced RCC. The expression of soluble programmed cell death-1 (sPD-1), soluble programmed cell death ligand-1 (sPD-L1), soluble PD-L2 (sPD-L2), and lymphocyte activation gene-3 (sLAG-3) was assessed in plasma samples from 42 patients with advanced RCC who received first-line IO combination therapy. All IMDC risk classifications were represented among the patients, including 14.3, 57.1, and 28.6% with favorable, intermediate, and poor risk, respectively. Univariate analysis revealed that prior nephrectomy, sPD-L2 levels, and sLAG-3 levels were significant factors affecting progression-free survival (PFS), whereas multivariate analyses suggested that sPD-L2 and sLAG-3 levels were independent prognostic factors for PFS. In a univariate analysis of the overall survival, prior nephrectomy and sPD-L2 levels were significant factors; no significant differences were observed in the multivariate analysis. No significant correlation was observed between the sPD-L2 and sLAG-3 levels and PD-L2 and LAG-3 expression via immunohistochemistry. In conclusion, sPD-L2 and sLAG-3 expression may serve as a potential biomarker for predicting IO combination therapy efficacy.
Collapse
Affiliation(s)
- Kosuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Keiichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Naoki Ito
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Yuya Sakai
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Satoshi Ohnishi
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Hiroki Suekane
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Hirofumi Kurose
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Katsuaki Chikui
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Kiyoaki Nishihara
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Makoto Nakiri
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Shigetaka Suekane
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan; (S.O.); (H.Y.)
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume 830-0011, Japan; (S.O.); (H.Y.)
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan; (K.U.); (N.I.); (Y.S.); (S.O.); (H.S.); (H.K.); (T.H.); (K.C.); (K.N.); (M.N.); (S.S.); (T.I.)
| |
Collapse
|
14
|
Wang CW, Biswas PK, Islam A, Chen MK, Chueh PJ. The Use of Immune Regulation in Treating Head and Neck Squamous Cell Carcinoma (HNSCC). Cells 2024; 13:413. [PMID: 38474377 PMCID: PMC10930979 DOI: 10.3390/cells13050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Immunotherapy has emerged as a promising new treatment modality for head and neck cancer, offering the potential for targeted and effective cancer management. Squamous cell carcinomas pose significant challenges due to their aggressive nature and limited treatment options. Conventional therapies such as surgery, radiation, and chemotherapy often have limited success rates and can have significant side effects. Immunotherapy harnesses the power of the immune system to recognize and eliminate cancer cells, and thus represents a novel approach with the potential to improve patient outcomes. In the management of head and neck squamous cell carcinoma (HNSCC), important contributions are made by immunotherapies, including adaptive cell therapy (ACT) and immune checkpoint inhibitor therapy. In this review, we are focusing on the latter. Immune checkpoint inhibitors target proteins such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) to enhance the immune response against cancer cells. The CTLA-4 inhibitors, such as ipilimumab and tremelimumab, have been approved for early-stage clinical trials and have shown promising outcomes in terms of tumor regression and durable responses in patients with advanced HNSCC. Thus, immune checkpoint inhibitor therapy holds promise in overcoming the limitations of conventional therapies. However, further research is needed to optimize treatment regimens, identify predictive biomarkers, and overcome potential resistance mechanisms. With ongoing advancements in immunotherapy, the future holds great potential for transforming the landscape of oral tumor treatment and providing new hope for patients.
Collapse
Affiliation(s)
- Che-Wei Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pulak Kumar Biswas
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (C.-W.W.); (A.I.)
| |
Collapse
|
15
|
Mestiri S, El-Ella DMA, Fernandes Q, Bedhiafi T, Almoghrabi S, Akbar S, Inchakalody V, Assami L, Anwar S, Uddin S, Gul ARZ, Al-Muftah M, Merhi M, Raza A, Dermime S. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers. Biomed Pharmacother 2024; 171:116095. [PMID: 38183744 DOI: 10.1016/j.biopha.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shaheena Anwar
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Muftah
- Translational Cancer and Immunity Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
16
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
17
|
Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol 2023; 16:101. [PMID: 37670328 PMCID: PMC10478462 DOI: 10.1186/s13045-023-01499-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
In one decade, immunotherapy based on immune checkpoint blockades (ICBs) has become a new pillar of cancer treatment following surgery, radiation, chemotherapy, and targeted therapies. However, not all cancer patients benefit from single or combination therapy with anti-CTLA-4 and anti-PD-1/PD-L1 monoclonal antibodies. Thus, an increasing number of immune checkpoint proteins (ICPs) have been screened and their effectiveness evaluated in preclinical and clinical trials. Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain-containing-3 (TIM-3), and T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) constitute the second wave of immunotherapy targets that show great promise for use in the treatment of solid tumors and leukemia. To promote the research and clinical application of ICBs directed at these targets, we summarize their discovery, immunotherapy mechanism, preclinical efficiency, and clinical trial results in this review.
Collapse
Affiliation(s)
- Letong Cai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuchen Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Mahalingam D, Chen S, Xie P, Loghmani H, Heineman T, Kalyan A, Kircher S, Helenowski IB, Mi X, Maurer V, Coffey M, Mulcahy M, Benson A, Zhang B. Combination of pembrolizumab and pelareorep promotes anti-tumour immunity in advanced pancreatic adenocarcinoma (PDAC). Br J Cancer 2023; 129:782-790. [PMID: 37443348 PMCID: PMC10449917 DOI: 10.1038/s41416-023-02344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND We previously reported activity of pelareorep, pembrolizumab and chemotherapy. Patients developed new T-cell clones and increased peripheral T-cell clonality, leading to an inflamed tumour. To evaluate a chemotherapy-free regimen, this study assesses if pelareorep and pembrolizumab has efficacy by inducing anti-tumour immunological changes (NCT03723915). METHODS PDAC patients who progressed after first-line therapy, received iv pelareorep induction with pembrolizumab every 21-days. Primary objective is overall response rate. Secondary objectives included evaluation of immunological changes within tumour and blood. RESULTS Clinical benefit rate (CBR) was 42% amongst 12 patients. One patient achieved partial response (PR) and four stable disease (SD). Seven progressed, deemed non-responders (NR). VDAC1 expression in peripheral CD8+ T cells was higher at baseline in CBR than NR but decreased in CBR upon treatment. On-treatment peripheral CD4+ Treg levels decreased in CBR but not in NR. Analysis of tumour demonstrated PD-L1+ cells touching CD8+ T cells, and NK cells were more abundant post-treatment vs. baseline. A higher intensity of PD-L1 in tumour infiltrates at baseline, particularly in CBR vs. NR. Finally, higher levels of soluble (s)IDO, sLag3, sPD-1 observed at baseline among NR vs. CBR. CONCLUSION Pelareorep and pembrolizumab showed modest efficacy in unselected patients, although potential immune and metabolic biomarkers were identified to warrant further evaluation.
Collapse
Affiliation(s)
- Devalingam Mahalingam
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Siqi Chen
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ping Xie
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Aparna Kalyan
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheetal Kircher
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irene B Helenowski
- Quantitative Data Sciences Core, Department of Preventative Medicine, Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xinlei Mi
- Quantitative Data Sciences Core, Department of Preventative Medicine, Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Victoria Maurer
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Mary Mulcahy
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Al- Benson
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology & Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
19
|
Mezi S, Pomati G, Fiscon G, Amirhassankhani S, Zizzari IG, Napoletano C, Rughetti A, Rossi E, Schinzari G, Tortora G, Lanzetta G, D’Amati G, Nuti M, Santini D, Botticelli A. A network approach to define the predictive role of immune profile on tumor response and toxicity of anti PD-1 single agent immunotherapy in patients with solid tumors. Front Immunol 2023; 14:1199089. [PMID: 37483633 PMCID: PMC10361061 DOI: 10.3389/fimmu.2023.1199089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background The immune profile of each patient could be considered as a portrait of the fitness of his/her own immune system. The predictive role of the immune profile in immune-related toxicities (irAEs) development and tumour response to treatment was investigated. Methods A prospective, multicenter study evaluating, through a multiplex assay, the soluble immune profile at the baseline of 53 patients with advanced cancer, treated with immunotherapy as single agent was performed. Four connectivity heat maps and networks were obtained by calculating the Spearman correlation coefficients for each group: responder patients who developed cumulative toxicity (R-T), responders who did not develop cumulative toxicity (R-NT), non-responders who developed cumulative toxicity (NR-T), non-responders who did not develop cumulative toxicity (NR-NT). Results A statistically significant up-regulation of IL-17A, sCTLA4, sCD80, I-CAM-1, sP-Selectin and sEselectin in NR-T was detected. A clear loss of connectivity of most of the soluble immune checkpoints and cytokines characterized the immune profile of patients with toxicity, while an inversion of the correlation for ICAM-1 and sP-selectin was observed in NR-T. Four connectivity networks were built for each group. The highest number of connections characterized the NR-T. Conclusions A connectivity network of immune dysregulation was defined for each subgroup of patients, regardless of tumor type. In patients with the worst prognosis (NR-T) the peculiar connectivity model could facilitate their early and timely identification, as well as the design of a personalized treatment approach to improve outcomes or prevent irAEs.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, “Sapienza” University of Rome, Rome, Italy
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital University of Bologna, Bologna, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Lanzetta
- Clinical Oncology Unit, Istituto Neurotraumatologico Italiano (I.N.I.) Grottaferrata, via di S.Anna snc, Grottaferrata, Italy
| | - Giulia D’Amati
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Daniele Santini
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Ibrahim R, Saleh K, Chahine C, Khoury R, Khalife N, Cesne AL. LAG-3 Inhibitors: Novel Immune Checkpoint Inhibitors Changing the Landscape of Immunotherapy. Biomedicines 2023; 11:1878. [PMID: 37509517 PMCID: PMC10377063 DOI: 10.3390/biomedicines11071878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
One of the most important steps forward in the management of cancer was the discovery of immunotherapy. It has become an essential pillar in the treatment paradigm of cancer patients. Unfortunately, despite the various options presented with immune checkpoint inhibitors (ICIs), the benefit is still limited to select patients and the vast majority of these patients gain either minimal benefit or eventually progress, leaving an unmet need for the development of novel therapeutic agents and strategies. Lymphocyte activation gene-3 (LAG-3), an immune checkpoint receptor protein, is a molecule found on the surface of activated T-cells. It plays a major role in negatively regulating T-cell function thereby providing tumors with an immune escape in the tumor microenvironment (TME). Given its importance in regulating the immune system, LAG-3 has been considered as a promising target in oncology and precision medicine. To date, two LAG-3-directed agents (eftilagimod alpha and relatlimab) have been approved in combination with programmed death-1 (PD-1) inhibitors in the setting of advanced solid tumors. In this review, we discuss the structure of LAG-3, its mechanism of action, and its interaction with its ligands. We also shed light on the emerging treatments targeting LAG-3 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Nadine Khalife
- Department of head and neck Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
21
|
Botticelli A, Cirillo A, Pomati G, Cortesi E, Rossi E, Schinzari G, Tortora G, Tomao S, Fiscon G, Farina L, Scagnoli S, Pisegna S, Ciurluini F, Chiavassa A, Amirhassankhani S, Ceccarelli F, Conti F, Di Filippo A, Zizzari IG, Napoletano C, Rughetti A, Nuti M, Mezi S, Marchetti P. Immune-related toxicity and soluble profile in patients affected by solid tumors: a network approach. Cancer Immunol Immunother 2023; 72:2217-2231. [PMID: 36869232 PMCID: PMC10264536 DOI: 10.1007/s00262-023-03384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/22/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have particular, immune-related adverse events (irAEs), as a consequence of interfering with self-tolerance mechanisms. The incidence of irAEs varies depending on ICI class, administered dose and treatment schedule. The aim of this study was to define a baseline (T0) immune profile (IP) predictive of irAE development. METHODS A prospective, multicenter study evaluating the immune profile (IP) of 79 patients with advanced cancer and treated with anti-programmed cell death protein 1 (anti-PD-1) drugs as a first- or second-line setting was performed. The results were then correlated with irAEs onset. The IP was studied by means of multiplex assay, evaluating circulating concentration of 12 cytokines, 5 chemokines, 13 soluble immune checkpoints and 3 adhesion molecules. Indoleamine 2, 3-dioxygenase (IDO) activity was measured through a modified liquid chromatography-tandem mass spectrometry using the high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) method. A connectivity heatmap was obtained by calculating Spearman correlation coefficients. Two different networks of connectivity were constructed, based on the toxicity profile. RESULTS Toxicity was predominantly of low/moderate grade. High-grade irAEs were relatively rare, while cumulative toxicity was high (35%). Positive and statistically significant correlations between the cumulative toxicity and IP10 and IL8, sLAG3, sPD-L2, sHVEM, sCD137, sCD27 and sICAM-1 serum concentration were found. Moreover, patients who experienced irAEs had a markedly different connectivity pattern, characterized by disruption of most of the paired connections between cytokines, chemokines and connections of sCD137, sCD27 and sCD28, while sPDL-2 pair-wise connectivity values seemed to be intensified. Network connectivity analysis identified a total of 187 statistically significant interactions in patients without toxicity and a total of 126 statistically significant interactions in patients with toxicity. Ninety-eight interactions were common to both networks, while 29 were specifically observed in patients who experienced toxicity. CONCLUSIONS A particular, common pattern of immune dysregulation was defined in patients developing irAEs. This immune serological profile, if confirmed in a larger patient population, could lead to the design of a personalized therapeutic strategy in order to prevent, monitor and treat irAEs at an early stage.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy.
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
- Medical Oncology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Giulia Fiscon
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy
| | - Lorenzo Farina
- Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy
| | - Simone Scagnoli
- Department of Medical and Surgical Sciences and Translational Medicine, University of Rome "Sapienza", 00185, Rome, Italy
| | - Simona Pisegna
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Fabio Ciurluini
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonella Chiavassa
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | - Sasan Amirhassankhani
- Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Rd, Bishop's, London, SE1 7EH, UK
| | - Fulvia Ceccarelli
- Arthritis Center, Dipartimento Di Scienze Cliniche Internistiche, Anestesiologiche E Cardiovascolari, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Fabrizio Conti
- Arthritis Center, Dipartimento Di Scienze Cliniche Internistiche, Anestesiologiche E Cardiovascolari, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", 00161, Rome, Italy
| | - Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, 00185, Rome, Italy
| | | |
Collapse
|
22
|
Pan S, Zhao W, Li Y, Ying Z, Luo Y, Wang Q, Li X, Lu W, Dong X, Wu Y, Wu X. Prediction of risk and overall survival of pancreatic cancer from blood soluble immune checkpoint-related proteins. Front Immunol 2023; 14:1189161. [PMID: 37256126 PMCID: PMC10225568 DOI: 10.3389/fimmu.2023.1189161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Background Immune checkpoint inhibition holds promise as a novel treatment for pancreatic ductal adenocarcinoma (PDAC). The clinical significance of soluble immune checkpoint (ICK) related proteins have not yet fully explored in PDAC. Methods We comprehensively profiled 14 soluble ICK-related proteins in plasma in 70 PDAC patients and 70 matched healthy controls. Epidemiological data of all subjects were obtained through structured interviews, and patients' clinical data were retrieved from electronical health records. We evaluated the associations between the biomarkers with the risk of PDAC using unconditional multivariate logistic regression. Consensus clustering (k-means algorithm) with significant biomarkers was performed to identify immune subtypes in PDAC patients. Prediction models for overall survival (OS) in PDAC patients were developed using multivariate Cox proportional hazards regression. Harrell's concordance index (C-index), time-dependent receiver operating characteristic (ROC) curve and calibration curve were utilized to evaluate performance of prediction models. Gene expressions of the identified ICK-related proteins in tumors from TCGA were analyzed to provide insight into underlying mechanisms. Results Soluble BTLA, CD28, CD137, GITR and LAG-3 were significantly upregulated in PDAC patients (all q < 0.05), and elevation of each of them was correlated with PDAC increased risk (all p < 0.05). PDAC patients were classified into soluble immune-high and soluble immune-low subtypes, using these 5 biomarkers. Patients in soluble immune-high subtype had significantly poorer OS than those in soluble immune-low subtype (log-rank p = 9.7E-03). The model with clinical variables and soluble immune subtypes had excellent predictive power (C-index = 0.809) for the OS of PDAC patients. Furthermore, the immune subtypes identified with corresponding genes' expression in PDAC tumor samples in TCGA showed an opposite correlation with OS to that of immune subtypes based on blood soluble ICK-related proteins (log-rank p =0.02). The immune-high subtype tumors displayed higher cytolytic activity (CYT) score than immune-low subtype tumors (p < 2E-16). Conclusion Five soluble ICK-related proteins were identified to be significantly associated with the risk and prognosis of PDAC. Patients who were classified as soluble immune-low subtype based on these biomarkers had better overall survival than those of the soluble immune-high subtype.
Collapse
Affiliation(s)
- Sai Pan
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenting Zhao
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yizhan Li
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhijun Ying
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yihong Luo
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qinchuan Wang
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Surgical Oncology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiawei Li
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjie Lu
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Dong
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yulian Wu
- Department of Hepato-Pancreato-Biliary Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xifeng Wu
- Center for Biostatistics, Bioinformatics and Big Data, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Bruss C, Kellner K, Albert V, Hutchinson JA, Seitz S, Ortmann O, Brockhoff G, Wege AK. Immune Checkpoint Profiling in Humanized Breast Cancer Mice Revealed Cell-Specific LAG-3/PD-1/TIM-3 Co-Expression and Elevated PD-1/TIM-3 Secretion. Cancers (Basel) 2023; 15:cancers15092615. [PMID: 37174080 PMCID: PMC10177290 DOI: 10.3390/cancers15092615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Checkpoint blockade is particularly based on PD-1/PD-L1-inhibiting antibodies. However, an efficient immunological tumor defense can be blocked not only by PD-(L)1 but also by the presence of additional immune checkpoint molecules. Here, we investigated the co-expression of several immune checkpoint proteins and the soluble forms thereof (e.g., PD-1, TIM-3, LAG-3, PD-L1, PD-L2 and others) in humanized tumor mice (HTM) simultaneously harboring cell line-derived (JIMT-1, MDA-MB-231, MCF-7) or patient-derived breast cancer and a functional human immune system. We identified tumor-infiltrating T cells with a triple-positive PD-1, LAG-3 and TIM-3 phenotype. While PD-1 expression was increased in both the CD4 and CD8 T cells, TIM-3 was found to be upregulated particularly in the cytotoxic T cells in the MDA-MB-231-based HTM model. High levels of soluble TIM-3 and galectin-9 (a TIM-3 ligand) were detected in the serum. Surprisingly, soluble PD-L2, but only low levels of sPD-L1, were found in mice harboring PD-L1-positive tumors. Analysis of a dataset containing 3039 primary breast cancer samples on the R2 Genomics Analysis Platform revealed increased TIM-3, galectin-9 and LAG-3 expression, not only in triple-negative breast cancer but also in the HER2+ and hormone receptor-positive breast cancer subtypes. These data indicate that LAG-3 and TIM-3 represent additional key molecules within the breast cancer anti-immunity landscape.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Bailly C, Thuru X, Goossens L, Goossens JF. Soluble TIM-3 as a biomarker of progression and therapeutic response in cancers and other of human diseases. Biochem Pharmacol 2023; 209:115445. [PMID: 36739094 DOI: 10.1016/j.bcp.2023.115445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Immune checkpoints inhibition is a privileged approach to combat cancers and other human diseases. The TIM-3 (T cell immunoglobulin and mucin-domain containing-3) inhibitory checkpoint expressed on different types of immune cells is actively investigated as an anticancer target, with a dozen of monoclonal antibodies in (pre)clinical development. A soluble form sTIM-3 can be found in the plasma of patients with cancer and other diseases. This active circulating protein originates from the proteolytic cleavage by two ADAM metalloproteases of the membrane receptor shared by tumor and non-tumor cells, and extracellular vesicles. In most cancers but not all, overexpression of mTIM-3 at the cell surface leads to high level of sTIM-3. Similarly, elevated levels of sTIM-3 have been reported in chronic autoimmune diseases, inflammatory gastro-intestinal diseases, certain viral and parasitic diseases, but also in cases of organ transplantation and in pregnancy-related pathologies. We have analyzed the origin of sTIM-3, its methods of dosage in blood or plasma, its presence in multiple diseases and its potential role as a biomarker to follow disease progression and/or the treatment response. In contrast to sPD-L1 generated by different classes of proteases and by alternative splicing, sTIM-3 is uniquely produced upon ADAM-dependent shedding, providing a more homogenous molecular entity and a possibly more reliable molecular marker. However, the biological functionality of sTIM-3 remains insufficiently characterized. The review shed light on pathologies associated with an altered expression of sTIM-3 in human plasma and the possibility to use sTIM-3 as a diagnostic or therapeutic marker.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Consulting Scientific Office, Lille (Wasquehal) 59290, France; University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France.
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Laurence Goossens
- University of Lille, Faculty of Pharmacy, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), 3 rue du Professeur Laguesse, 59000 Lille, France; University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, 59000 Lille, France
| |
Collapse
|
25
|
Li Y, Wang W, Tian J, Zhou Y, Shen Y, Wang M, Tang L, Liu C, Zhang X, Shen F, Chen Y, Gu Y. Clinical Significance of Soluble LAG-3 (sLAG-3) in Patients With Cervical Cancer Determined via Enzyme-Linked Immunosorbent Assay With Monoclonal Antibodies. Technol Cancer Res Treat 2023; 22:15330338231202650. [PMID: 37968933 PMCID: PMC10655791 DOI: 10.1177/15330338231202650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 11/17/2023] Open
Abstract
Background: The tumor microenvironment and tumor immunity have become the focus of research on tumor diagnosis and treatment. Lymphocyte activation gene-3 (LAG-3, CD223) is a newly discovered immunosuppressive receptor that is abnormally expressed in various tumor microenvironments and plays an important role as an immune checkpoint in the tumor immune response. Objective: We developed a novel enzyme-linked immunosorbent assay kit, examined the levels of soluble LAG-3 (sLAG-3) in the serum of patients with cervical cancer, and identified new biomarkers for cervical cancer development. Methods: To investigate the potential biological function of sLAG-3, we generated and characterized 2 novel anti-LAG-3 monoclonal antibodies, namely 4F4 and 4E12. We performed western blotting, immunofluorescence, and immunohistochemistry using hybridoma technology and an enzyme-linked immunosorbent assay kit for detecting human sLAG-3 based on an improved double-antibody sandwich enzyme-linked immunosorbent assay method. The stability and sensitivity of these kits were also assessed. Results: We screened and characterized 2 novel monoclonal antibodies against human LAG-3. The enzyme-linked immunosorbent assay kit also includes a wide range of tests. Using this enzyme-linked immunosorbent assay system, we found that the expression level of sLAG-3 in the peripheral blood of patients with cervical cancer significantly decreased as the disease progressed (P < .0001). Multivariate logistic regression analysis revealed that low sLAG-3 expression was an independent predictor of cervical cancer and related diseases (P < .05). Furthermore, receiver operating characteristic curve analysis showed that sLAG-3 had diagnostic value for cervical cancer metastasis (P < .0001). Conclusion: These data suggest that sLAG-3 is a potential biomarker for cervical cancer development. Therefore, this kit has a certain application value in the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenwen Wang
- Department of General surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jingluan Tian
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyuan Wang
- Suzhou Red Cross Blood Station, Suzhou, Jiangsu, China
| | - Longhai Tang
- Suzhou Red Cross Blood Station, Suzhou, Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fangrong Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Tran BTT, Gelin A, Durand S, Texier M, Daste A, Toullec C, Benihoud K, Breuskin I, Gorphe P, Garic F, Brenner C, Le Tourneau C, Fayette J, Niki T, David M, Busson P, Even C. Plasma galectins and metabolites in advanced head and neck carcinomas: evidence of distinct immune characteristics linked to hypopharyngeal tumors. Oncoimmunology 2022; 12:2150472. [PMID: 36545254 PMCID: PMC9762837 DOI: 10.1080/2162402x.2022.2150472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Extra-cellular galectins 1, 3 and 9 (gal-1, -3 and -9) are known to act as soluble immunosuppressive agents in various malignancies. Previous publications have suggested that their expression is dependent on the metabolic status of producing cells and reciprocally that they can influence metabolic pathways in their target cells. Very little is known about the status of gal-1, -3 and -9 in patients bearing head and neck squamous cell carcinomas (HNSCC) and about their relationships with the systemic metabolic condition. This study was conducted in plasma samples from a prospective cohort of 83 HNSCC patients with advanced disease. These samples were used to explore the distribution of gal-1, -3 and -9 and simultaneously to profile a series of 87 metabolites assessed by mass spectrometry. We identified galectin and metabolic patterns within five disease categories defined according to the primary site and human papillomavirus (HPV) status (HPV-positive and -negative oropharyngeal carcinomas, carcinomas of the oral cavity, hypopharynx and larynx carcinomas). Remarkably, samples related to hypopharyngeal carcinomas displayed the highest average concentration of gal-9 (p = .017) and a trend toward higher concentrations of kynurenine, a potential factor of tumor growth and immune suppression. In contrast, there was a tendency toward higher concentrations of fatty acids in samples related to oral cavity. These observations emphasize the diversity of HPV-negative HNSCCs. Depending on their primary site, they evolve into distinct types of immune and metabolic landscapes that seem to be congruent with specific oncogenic mechanisms.
Collapse
Affiliation(s)
- Bao-Tram Thi Tran
- CNRS UMR 9018-METSY, Gustave Roussy and Université Paris-Saclay, Villejuif, France
| | - Aurore Gelin
- CNRS UMR 9018-METSY, Gustave Roussy and Université Paris-Saclay, Villejuif, France
| | - Sylvère Durand
- Plateforme de Métabolomique/UMR 1138, Gustave Roussy and Université Paris-Saclay, Villejuif, France
| | - Matthieu Texier
- Service d’Epidémiologie et de Biostatistiques, Gustave Roussy and Université Paris-Saclay, Villejuif, France
| | - Amaury Daste
- Department of Medical Oncology, Hôpital Saint André, Bordeaux, France
| | - Clémence Toullec
- GI and Liver/Head and Neck unit, Institut du Cancer-Avignon Provence, Avignon, France
| | - Karim Benihoud
- CNRS UMR 9018-METSY, Gustave Roussy and Université Paris-Saclay, Villejuif, France
| | - Ingrid Breuskin
- Service de Cancérologie Cervico-Faciale, Gustave Roussy, Villejuif, France
| | - Philippe Gorphe
- Service de Cancérologie Cervico-Faciale, Gustave Roussy, Villejuif, France
| | | | - Catherine Brenner
- CNRS UMR 9018-METSY, Gustave Roussy and Université Paris-Saclay, Villejuif, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie and Paris-Saclay University, Paris, France
| | - Jérôme Fayette
- Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286 & Department of Medical Oncology, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Kita-gun, Japan
| | - Muriel David
- HiFiBiO Therapeutics, Pépinière Paris Santé Cochin, Paris, France
| | - Pierre Busson
- CNRS UMR 9018-METSY, Gustave Roussy and Université Paris-Saclay, Villejuif, France,CONTACT Pierre Busson CNRS UMR 9018-METSY, Gustave Roussy, 39, Rue Camile Desmoulins, F-94805Villejuif, France
| | - Caroline Even
- Service de Cancérologie Cervico-Faciale, Gustave Roussy, Villejuif, France
| |
Collapse
|
27
|
Andrews LP, Cillo AR, Karapetyan L, Kirkwood JM, Workman CJ, Vignali DAA. Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy. Clin Cancer Res 2022; 28:5030-5039. [PMID: 35579997 PMCID: PMC9669281 DOI: 10.1158/1078-0432.ccr-21-2390] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy targeting coinhibitory receptors has been highly successful in treating a wide variety of malignancies; however, only a subset of patients exhibits durable responses. The first FDA-approved immunotherapeutics targeting coinhibitory receptors PD1 and CTLA4, alone or in combination, significantly improved survival but were also accompanied by substantial toxicity in combination. The third FDA-approved immune checkpoint inhibitor targets LAG3, a coinhibitory receptor expressed on activated CD4+ and CD8+ T cells, especially in settings of long-term antigenic stimulation, such as chronic viral infection or cancer. Mechanistically, LAG3 expression limits both the expansion of activated T cells and the size of the memory pool, suggesting that LAG3 may be a promising target for immunotherapy. Importantly, the mechanism(s) by which LAG3 contributes to CD8+ T-cell exhaustion may be distinct from those governed by PD1, indicating that the combination of anti-LAG3 and anti-PD1 may synergistically enhance antitumor immunity. Clinical studies evaluating the role of anti-LAG3 in combination with anti-PD1 are underway, and recent phase III trial results in metastatic melanoma demonstrate both the efficacy and safety of this combination. Further ongoing clinical trials are evaluating this combination across multiple tumor types and the adjuvant setting, with accompanying translational and biomarker-focused studies designed to elucidate the molecular pathways that lead to improved antitumor T-cell responses following dual blockade of PD1 and LAG3. Overall, LAG3 plays an important role in limiting T-cell activation and has now become part of the repertoire of combinatorial immunotherapeutics available for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lilit Karapetyan
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John M Kirkwood
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Rühle A, Todorovic J, Spohn SSK, Gkika E, Becker C, Knopf A, Zamboglou C, Sprave T, Werner M, Grosu AL, Kayser G, Nicolay NH. Prognostic value of tumor-infiltrating immune cells and immune checkpoints in elderly head-and-neck squamous cell carcinoma patients undergoing definitive (chemo)radiotherapy. Radiat Oncol 2022; 17:181. [DOI: 10.1186/s13014-022-02153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background and purpose
Tumor-infiltrating lymphocytes (TILs) are associated with locoregional control (LRC) in head-and-neck squamous cell carcinoma (HNSCC) patients undergoing (chemo)radiotherapy. As immunosenescence results in reduced immune activity, the role of TILs in elderly HNSCC patients may differ compared to younger patients, providing a rationale to study the prognostic role of TILs and immune checkpoints (ICs) in this population.
Material and methods
Sixty-three HNSCC patients aged ≥ 65 years undergoing definitive (chemo)radiotherapy between 2010 and 2019 with sufficient material from pre-treatment biopsies were included in the analysis. Immunohistochemical stainings of CD3, CD4, CD8, PD-L1, TIM3, LAG3, TIGIT and CD96, and of osteopontin as an immunosenescence-associated protein were performed. Overall survival (OS) and progression-free survival (PFS) were determined using the Kaplan–Meier method, and Fine-Gray's models were used for locoregional failure (LRF) analyses.
Results
While there was no correlation between patient age and IC expression, osteopontin levels correlated with increasing age (r = 0.322, p < 0.05). Two-year OS, PFS, and LRC were 44%, 34%, and 71%, respectively. Increased LAG3 expression, both intraepithelial (SHR = 0.33, p < 0.05) and stromal (SHR = 0.38, p < 0.05), and elevated stromal TIM3 expression (SHR = 0.32, p < 0.05) corresponded with reduced LRFs. Absent tumoral PD-L1 expression (TPS = 0%) was associated with more LRFs (SHR = 0.28, p < 0.05). There was a trend towards improved LRF rates in elderly patients with increased intraepithelial CD3 + (SHR = 0.52, p = 0.07) and CD8 + (SHR = 0.52, p = 0.09) TIL levels.
Conclusion
LAG3, TIM3 and TPS are promising biomarkers in elderly HNSCC patients receiving (chemo)radiotherapy. Considering the frequency of non-cancer related deaths in this population, the prognostic value of these biomarkers primarily relates to LRC.
Collapse
|
29
|
Botticelli A, Pomati G, Cirillo A, Scagnoli S, Pisegna S, Chiavassa A, Rossi E, Schinzari G, Tortora G, Di Pietro FR, Cerbelli B, Di Filippo A, Amirhassankhani S, Scala A, Zizzari IG, Cortesi E, Tomao S, Nuti M, Mezi S, Marchetti P. The role of immune profile in predicting outcomes in cancer patients treated with immunotherapy. Front Immunol 2022; 13:974087. [PMID: 36405727 PMCID: PMC9671166 DOI: 10.3389/fimmu.2022.974087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Background Despite the efficacy of immunotherapy, only a small percentage of patients achieves a long-term benefit in terms of overall survival. The aim of this study was to define an immune profile predicting the response to immune checkpoint inhibitors (ICIs). Methods Patients with advanced solid tumors, who underwent ICI treatment were enrolled in this prospective study. Blood samples were collected at the baseline. Thirteen soluble immune checkpoints, 3 soluble adhesion molecules, 5 chemokines and 11 cytokines were analyzed. The results were associated with oncological outcomes. Results Regardless of tumor type, patients with values of sTIM3, IFNα, IFNγ, IL1β, IL1α, IL12p70, MIP1β, IL13, sCD28, sGITR, sPDL1, IL10 and TNFα below the median had longer overall survival (p<0.05). By using cluster analysis and grouping the patients according to the trend of the molecules, two clusters were found. Cluster A had a significantly higher mean progression free survival (Cluster A=11.9 months vs Cluster B=3.5 months, p<0.01), a higher percentage of disease stability (Cluster A=34.5% vs. Cluster B=0%, p<0.05) and a lower percentage of disease progression (Cluster A=55.2% vs. Cluster B = 94.4%, p=0.04). Conclusion The combined evaluation of soluble molecules, rather than a single circulating factor, may be more suitable to represent the fitness of the immune system status in each patient and could allow to identify two different prognostic and predictive outcome profiles.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- *Correspondence: Alessio Cirillo,
| | - Simone Scagnoli
- Department of Medical and Surgical Sciences and Translational Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Simona Pisegna
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Antonella Chiavassa
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
- Medical Oncology, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | | | - Bruna Cerbelli
- Department of Medico-Surgical Sciences and Biotechnology, Polo Pontino, Sapienza University, Rome, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Sasan Amirhassankhani
- Department of Urology, S. Orsola-Malpighi Hospital University of Bologna, Via Palagi, Bologna, Italy
| | - Alessandro Scala
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Enrico Cortesi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Silverio Tomao
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Silvia Mezi
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
30
|
Jiang S, Li X, Huang L, Xu Z, Lin J. Prognostic value of PD-1, PD-L1 and PD-L2 deserves attention in head and neck cancer. Front Immunol 2022; 13:988416. [PMID: 36119046 PMCID: PMC9478105 DOI: 10.3389/fimmu.2022.988416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck cancer has high heterogeneity with poor prognosis, and emerging researches have been focusing on the prognostic markers of head and neck cancer. PD-L1 expression is an important basis for strategies of immunosuppressive treatment, but whether it has prognostic value is still controversial. Although meta-analysis on PD-L1 expression versus head and neck cancer prognosis has been performed, the conclusions are controversial. Since PD-L1 and PD-L2 are two receptors for PD-1, here we summarize and analyze the different prognostic values of PD-1, PD-L1, and PD-L2 in head and neck cancer in the context of different cell types, tissue localization and protein forms. We propose that for head and neck cancer, the risk warning value of PD-1/PD-L1 expression in precancerous lesions is worthy of attention, and the prognostic value of PD-L1 expression at different subcellular levels as well as the judgment convenience of prognostic value of PD-1, PD-L1, PD-L2 should be fully considered. The PD-L1 evaluation systems established based on immune checkpoint inhibitors (ICIs) are not fully suitable for the evaluation of PD-L1 prognosis in head and neck cancer. It is necessary to establish a new PD-L1 evaluation system based on the prognosis for further explorations. The prognostic value of PD-L1, PD-L2 expression in head and neck cancer may be different for early-stage and late-stage samples, and further stratification is required.
Collapse
Affiliation(s)
- Siqing Jiang
- Department of Comprehensive Chemotherapy/Head and Neck Cancer, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xin Li
- Department of Pain Management and Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhensheng Xu
- Department of Oncologic Chemotheraphy, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
- *Correspondence: Zhensheng Xu, ; Jinguan Lin,
| | - Jinguan Lin
- Department of Comprehensive Chemotherapy/Head and Neck Cancer, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Zhensheng Xu, ; Jinguan Lin,
| |
Collapse
|
31
|
Sauer N, Szlasa W, Jonderko L, Oślizło M, Kunachowicz D, Kulbacka J, Karłowicz-Bodalska K. LAG-3 as a Potent Target for Novel Anticancer Therapies of a Wide Range of Tumors. Int J Mol Sci 2022; 23:9958. [PMID: 36077354 PMCID: PMC9456311 DOI: 10.3390/ijms23179958] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022] Open
Abstract
LAG-3 (Lymphocyte activation gene 3) protein is a checkpoint receptor that interacts with LSEC-tin, Galectin-3 and FGL1. This interaction leads to reduced production of IL-2 and IFN-γ. LAG-3 is widely expressed in different tumor types and modulates the tumor microenvironment through immunosuppressive effects. Differential expression in various tumor types influences patient prognosis, which is often associated with coexpression with immune checkpoint inhibitors, such as TIM-3, PD-1 and CTLA-4. Here, we discuss expression profiles in different tumor types. To date, many clinical trials have been conducted using LAG-3 inhibitors, which can be divided into anti-LAG-3 monoclonal antibodies, anti-LAG-3 bispecifics and soluble LAG-3-Ig fusion proteins. LAG-3 inhibitors supress T-cell proliferation and activation by disallowing for the interaction between LAG-3 to MHC-II. The process enhances anti-tumor immune response. In this paper, we will review the current state of knowledge on the structure, function and expression of LAG-3 in various types of cancer, as well as its correlation with overall prognosis, involvement in cell-based therapies and experimental medicine. We will consider the role of compounds targeting LAG-3 in clinical trials both as monotherapy and in combination, which will provide data relating to the efficacy and safety of proposed drug candidates.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Laura Jonderko
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | | | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | |
Collapse
|
32
|
Tissue and circulating PD-L2: moving from health and immune-mediated diseases to head and neck oncology. Crit Rev Oncol Hematol 2022; 175:103707. [PMID: 35569724 DOI: 10.1016/j.critrevonc.2022.103707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Amongst the chief targets of immune-checkpoint inhibitors (ICIs), namely the Programmed cell death protein 1 (PD-1)/PD-Ligands (Ls) axis, most research has focused on PD-L1, while to date PD-L2 is still under-investigated. However, emerging data support PD-L2 relevant expression in malignancies of the head and neck area, mostly in head and neck squamous cell carcinoma (HNSCC) and salivary gland cancers (SGCs). In this context, ICIs have achieved highly heterogeneous outcomes, emphasizing an urgent need for the identification of predictive biomarkers. With the present review, we aimed at describing PD-L2 biological significance by focusing on its tissue expression, its binding to PD-1 and RGMb receptors, and its impact on physiological and anti-cancer immune response. Specifically, we reported PD-L2 expression rates and significant clinical correlates among different head and neck cancer histotypes. Finally, we described the biology of soluble PD-L2 form and its potential application as a prognostic and/or predictive circulating biomarker.
Collapse
|
33
|
Kgokolo MCM, Anderson K, Siwele SC, Steel HC, Kwofie LLI, Sathekge MM, Meyer PWA, Rapoport BL, Anderson R. Elevated Levels of Soluble CTLA-4, PD-1, PD-L1, LAG-3 and TIM-3 and Systemic Inflammatory Stress as Potential Contributors to Immune Suppression and Generalized Tumorigenesis in a Cohort of South African Xeroderma Pigmentosum Patients. Front Oncol 2022; 12:819790. [PMID: 35223501 PMCID: PMC8874270 DOI: 10.3389/fonc.2022.819790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Xeroderma Pigmentosum (XP), an autosomal recessive disorder characterized by ultraviolet radiation-induced abnormalities of DNA excision and repair pathways is associated with early development of cutaneous cancers. Intracellular oxidative stress has also been proposed as a contributor to the occurrence of skin cancers. However, little is known about the possible augmentative contributions of chronic inflammation, immune suppression and oxidative stress to the pathogenesis of malignancies associated with other subtypes of XP. This has been addressed in the current study, focused on the measurement of systemic biomarkers of inflammation, immune dysfunction and oxidative damage in XP patients, consisting of XP-C, XP-D and XP-E cases, including those XP-C cases who had already developed multiple skin malignancies. The inflammatory biomarker profile measured in XP patients and healthy control subjects included the cytokines, interleukins (ILs)-2, -4, -6, -10, interferon-γ (IFN- γ) and tumor-necrosis factor-α (TNF-α), the acute phase reactant, C-reactive protein (CRP), and cotinine (as an objective indicator of smoking status). Immune suppression was detected according to the levels of five soluble inhibitory immune checkpoint proteins (CTLA-4, PD-1, PD-L1, LAG-3 and TIM-3), as well as those of vitamin D, while oxidative stress was determined according to the circulating levels of the DNA adduct, 8-hydroxy-2-deoxyguanosine (8-OH-dG). These various biomarkers were measured in plasma using immunofluorimetric, nephelometric and ELISA procedures. Significant elevations in IL-6 (P<0.01) and TNF-α (P<0.0001), but none of the other cytokines, as well as increased levels of all five soluble inhibitory immune checkpoints (P=0.032-P=0.0001) were detected in the plasma of the XP patients. C-reactive protein and vitamin D were increased and decreased, respectively (both P<0.0001), while only one participant had an elevated level of plasma cotinine. Surprisingly, the levels of 8-OH-dG were significantly (P=0.0001) lower in the group of XP patients relative to a group of healthy control subjects. The findings of increased levels of pro-inflammatory cytokines and, in particular, those of the soluble immune checkpoints, in the setting of decreased vitamin D and moderately elevated levels of CRP in XP patients suggest a possible secondary role of ongoing, inflammatory stress and immune suppression in the pathogenesis of XP-associated malignancies.
Collapse
Affiliation(s)
- Mahlatse C M Kgokolo
- Department of Dermatology, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Katherine Anderson
- Department of Dermatology, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shalate C Siwele
- Department of Dermatology, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Luyanda L I Kwofie
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, Faculty of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Pieter W A Meyer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | - Bernardo L Rapoport
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,The Medical Oncology Centre of Rosebank, Johannesburg, South Africa
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Update on lymphocyte-activation gene 3 (LAG-3) in cancers: from biological properties to clinical applications. Chin Med J (Engl) 2022; 135:1203-1212. [PMID: 35170503 PMCID: PMC9337260 DOI: 10.1097/cm9.0000000000001981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy that targets checkpoints, especially programmed cell death protein 1 and programmed cell death ligand 1, has revolutionized cancer therapy regimens. The overall response rate to mono-immunotherapy, however, is limited, emphasizing the need to potentiate the efficacy of these regimens. The functions of immune cells are modulated by multiple stimulatory and inhibitory molecules, including lymphocyte activation gene 3 (LAG-3). LAG-3 is co-expressed together with other inhibitory checkpoints and plays key roles in immune suppression. Increasing evidence, particularly in the last 5 years, has shown the potential of LAG-3 blockade in anti-tumor immunity. This review provides an update on the biological properties and clinical applications of LAG-3 in cancers.
Collapse
|
35
|
Shi AP, Tang XY, Xiong YL, Zheng KF, Liu YJ, Shi XG, Lv Y, Jiang T, Ma N, Zhao JB. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front Immunol 2022; 12:785091. [PMID: 35111155 PMCID: PMC8801495 DOI: 10.3389/fimmu.2021.785091] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.
Collapse
Affiliation(s)
- An-Ping Shi
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xian-Gui Shi
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Yao Lv
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
36
|
Guo M, Qi F, Rao Q, Sun J, Du X, Qi Z, Yang B, Xia J. Serum LAG-3 Predicts Outcome and Treatment Response in Hepatocellular Carcinoma Patients With Transarterial Chemoembolization. Front Immunol 2021; 12:754961. [PMID: 34691076 PMCID: PMC8530014 DOI: 10.3389/fimmu.2021.754961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background Transarterial chemoembolization (TACE) stands for the most commonly utilized therapy for hepatocellular carcinoma (HCC) worldwide. This study was to explore the potential predictive and prognostic roles of LAG-3 and PD-L1 as serum biomarkers in HCC patients underwent TACE treatment. Methods A total of 100 HCC patients receiving TACE as well as 30 healthy controls were enrolled in the study. Serum LAG-3 and PD-L1 levels were determined at baseline and 3 day after TACE using enzyme-linked immunosorbent assay (ELISA). Results We found serum levels of LAG-3 and PD-L1 were significantly elevated in HCC patients compared with healthy controls. Interestingly, patients with low pre-TACE and post-TACE levels of LAG-3 but not PD-L1 had a high probability of achieving an objective response (OR) after TACE treatment. Additionally, high pre-TACE LAG-3 level was correlated with poor disease outcome, and the patients with both high serum LAG-3 and PD-L1 level had the shorter overall survival (OS) than patients who are either PD-L1 or LAG-3 high or both PD-L1 and LAG-3 low. High pre-TACE serum LAG-3 level was positively associated with more cirrhosis pattern, advanced BCLC stage, pre-TACE alanine aminotransferase (ALT) level, and pre-TACE aspartate aminotransferase (AST) level. Furthermore, in 50 patients who underwent TACE, the serum LAG-3 level was significantly decreased at 3 day after TACE. Conclusion Both pre-TACE and post-TACE serum LAG-3 levels could serve as powerful predictors for tumor response of TACE, and high pre-TACE serum LAG-3 level was an indicator for poor prognosis in HCC.
Collapse
Affiliation(s)
- Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianwen Rao
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojing Du
- Minhang Hospital, Fudan University, Shanghai, China
| | - Zhuoran Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|