1
|
Djordjevic I, Garai N, Peric S, Karanovic J, Pesovic J, Brkusanin M, Lavrnic D, Apostolski S, Savic-Pavicevic D, Basta I. Association between Cytotoxic T-Lymphocyte-Associated Antigen 4 (CTLA-4) Locus and Early-Onset Anti-acetylcholine Receptor-Positive Myasthenia Gravis in Serbian Patients. Mol Neurobiol 2024; 61:9539-9547. [PMID: 38652350 DOI: 10.1007/s12035-024-04183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Genome-wide association studies (GWAS) have provided strong evidence that early- and late-onset MG have different genetic backgrounds. Recent in silico analysis based on GWAS results revealed rs231735 and rs231770 variants within CTLA-4 locus as possible MG causative genetic factors. We aimed to explore the association of rs231735 and rs231770 with MG in a representative cohort of Serbian patients. We conducted an age-, sex-, and ethnicity-matched case-control study. Using TaqMan allele discrimination assays, the frequency of rs231735 and rs231770 genetic variants was examined in 447 AChR-MG patients and 447 matched controls. There was no significant association of rs231735 and rs231770 with the entire MG cohort (P > 0.05). Nevertheless, when stratifying patients into early-onset (n = 183) and late-onset MG (n = 264), we found early-onset patients had a significantly lower frequency of the rs231735 allele T compared to controls (OR = 0.734, 95% CI = 0.575-0.938, p10e6 permutation < 0.05), and rs231735 genotype TT and rs231770 genotype TT had a protective effect on early-onset MG (OR = 0.548, 95% CI = 0.339-0.888, and OR = 0.563, 95% CI = 0.314-1.011, p10e6 permutation < 0.05). Consequently, we found that individuals with the rs231735-rs231770 haplotype GC had a higher risk for developing early-onset MG (OR = 1.360, P = 0.027, p10e6 permutation < 0.05). Our results suggest that CTLA-4 rs231735 and rs231770 may be risk factors only for patients with early-onset MG in Serbian population.
Collapse
Affiliation(s)
- Ivana Djordjevic
- University Clinical Center of Serbia, Neurology Clinic, 6 Dr Subotića starijeg street, Belgrade, 11129, Serbia.
| | - Nemanja Garai
- University of Belgrade, Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Stojan Peric
- University Clinical Center of Serbia, Neurology Clinic, 6 Dr Subotića starijeg street, Belgrade, 11129, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Jelena Karanovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biology, Belgrade, Serbia
| | - Jovan Pesovic
- University of Belgrade, Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Milos Brkusanin
- University of Belgrade, Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Dragana Lavrnic
- University Clinical Center of Serbia, Neurology Clinic, 6 Dr Subotića starijeg street, Belgrade, 11129, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | | | - Dusanka Savic-Pavicevic
- University of Belgrade, Faculty of Biology, Center for Human Molecular Genetics, Belgrade, Serbia
| | - Ivana Basta
- University Clinical Center of Serbia, Neurology Clinic, 6 Dr Subotića starijeg street, Belgrade, 11129, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| |
Collapse
|
2
|
Al-Dahimavi S, Safaralizadeh R, Khalaj-Kondori M. Evaluating the Serum Level of ACTH and Investigating the Expression of miR-26a, miR-34a, miR-155-5p, and miR-146a in the Peripheral Blood Cells of Multiple Sclerosis Patients. Biochem Genet 2024:10.1007/s10528-024-10909-z. [PMID: 39223335 DOI: 10.1007/s10528-024-10909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disorder affecting white and gray matter. This study aimed to investigate the association between clinical outcomes in MS patients and the levels of certain molecules in their serum, including ACTH, IL-17, and specific miRNAs: miR-26a, miR-34a, miR-155-5p, and miR-146a. Fifty healthy people and 75 blood samples from MS patients were selected. MS patients had higher expression levels of IL-17, miR-26a, miR-34a, and miR-146a compared to healthy individuals (p < 0.0001). There was no significant difference in miR-155-5p expression between the two groups (p = 0.203). MS patients also had higher serum levels of ACTH compared to the normal population (p < 0.0001). In MS patients, there was a negative correlation between IL-17 and miR-155-5p expression levels (p = 0.048, r = - 0.229). Similarly, a significant negative correlation was observed between ACTH and miR-155-5p in the control group (p = 0.044, r = - 0.286). The study's analysis revealed no significant difference in the expression of miR-155-5p between MS patients and normal individuals; the study's examination revealed that the expression level of IL-17, miR-26a, miR-34a, and miR-146a was higher in MS patients than in normal individuals.
Collapse
Affiliation(s)
- Sareh Al-Dahimavi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Abdoli Shadbad M, Miraki Feriz A, Baradaran B, Safarpour H. Tumor-infiltrating CD8 + sub-populations in primary and recurrent glioblastoma: An in-silico study. Heliyon 2024; 10:e27329. [PMID: 38495199 PMCID: PMC10943382 DOI: 10.1016/j.heliyon.2024.e27329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Background Glioblastoma multiforme (GBM) remains an incurable primary brain tumor. CD8+ tumor-infiltrating lymphocytes (TILs) can target malignant cells; however, their anti-tumoral immune responses mostly do not lead to GBM rejection in GBM patients. We profiled the sub-populations of tumor-infiltrating CD8+ T-cells, i.e., naïve, cytotoxic, and exhausted cells, in primary and recurrent GBM tissues and provided a blueprint for future precision-based GBM immunotherapy. Method We re-analyzed the raw data of single-cell RNA sequencing on the cells residing in the GBM microenvironment and leveraged tumor bulk RNA analyses to study the significance of CD8+ TILs sub-populations in primary and recurrent GBM. We investigated cell-cell interaction between exhausted CD8+ TILs and other immune cells residing in the primary and recurrent GBM microenvironments and profiled the expression changes following CD8+ TILs' transition from primary GBM to recurrent GBM. Results Exhausted CD8+ TILs are the majority of CD8+ TILs sub-populations in primary and recurrent GBM, and cytotoxic CD8+ TILs display decreased expression of inhibitory immune checkpoint (IC) molecules in the primary and recurrent GBM. In the primary and recurrent GBM microenvironment, exhausted CD8+ TILs interact most with tumor-infiltrating dendritic cells. Conclusion This study demonstrates the profiles of CD8+ TILs sub-populations in primary and recurrent GBM and provides a proof-of-concept for future precision-based GBM immunotherapy.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Abdoli Shadbad M, Baghbanzadeh A, Baradaran B. hsa-miR-34a-5p enhances temozolomide anti-tumoral effects on glioblastoma: in-silico and in-vitro study. EXCLI JOURNAL 2024; 23:384-400. [PMID: 38655096 PMCID: PMC11036064 DOI: 10.17179/excli2023-6404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Glioblastoma multiform (GBM) is a commonly diagnosed brain neoplasm with a poor prognosis. Accumulating evidence has highlighted the significance of microRNA (miR) dysregulation in tumor development and progression. This study investigated the effect of hsa-miR-34a-5p and its combination with temozolomide on GBM, the related molecular mechanisms, and the signaling pathway using in-silico and in-vitro approaches. The in-silico tumor bulk and single-cell RNA sequencing analyses were done on TCGA-GTEx, CGGA, GSE13276, GSE90603, and GSE182109 datasets. After selecting the A172 cell line, hsa-miR-34a-5p mimics were transfected, and the cell viability, migration, cell cycle, clonogenicity, and apoptosis of studied groups were studied using MTT, scratch, flow cytometry, colony formation, and Annexin V/PI assays. The mRNA expression of CASP9, CASP3, CASP8, MMP2, CD44, CDK6, CDK4, CCND1, RAF1, MAP2K1, MET, SRC, and CD274 was studied using qRT-PCR method. hsa-miR-34a-5p downregulated RAF1 expression, as the signaling factor of the MAPK pathway. The combined treatment significantly downregulated the expression of MET, SRC, and MAP2K1, leading to the inhibition of the MET/MAPK pathway compared to temozolomide. Besides exerting anti-tumoral effects on the cell viability, migration, cell cycle, apoptosis, and clonogenicity of A172 cells, its combination with temozolomide enhanced temozolomide anti-tumoral effect. Compared to temozolomide, the combined treatment significantly decreased CDK4, CDK6, CCND1, and MMP2 expression. hsa-miR-34a-5p targets RAF1, as the signaling factor of the MAPK pathway, and potentiates the temozolomide anti-tumoral effect on A172 cells.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Ipavec N, Rogić Vidaković M, Markotić A, Pavelin S, Buljubašić Šoda M, Šoda J, Dolić K, Režić Mužinić N. Treated and Untreated Primary Progressive Multiple Sclerosis: Walkthrough Immunological Changes of Monocytes and T Regulatory Cells. Biomedicines 2024; 12:464. [PMID: 38398067 PMCID: PMC10887021 DOI: 10.3390/biomedicines12020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to investigate regulatory T cells (Tregs) and monocytes; specifically, the expression of CTLA-4 (CD152) and FOXP3+ in CD4+CD25+ Tregs and the expression of CD40+ and CD192+ monocyte subpopulations in subjects with primary progressive multiple sclerosis (PPMS). Immunological analysis was conducted on peripheral blood samples collected from the 28 PPMS subjects (15 treated with ocrelizumab and 13 untreated PPMS subjects) and 10 healthy control subjects (HCs). The blood samples were incubated with antihuman CD14, CD16, CD40, and CD192 antibodies for monocytes and antihuman CD4, CD25, FOXP3, and CTLA-4 antibodies for lymphocytes. The study results showed that in comparison to HCs both ocrelizumab treated (N = 15) and untreated (N = 13) PPMS subjects had significantly increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs. Further, ocrelizumab treated PPMS subjects, compared to the untreated ones, had significantly decreased percentages of CD192+ and CD40+ nonclassical monocytes. Increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs in both ocrelizumab treated and untreated PPMS subjects indicates the suppressive (inhibitory) role of Tregs in abnormal immune responses in PPMS subjects. Decreased percentages of CD40+ and CD192+ non-classical CD14+CD16++ monocytes for treated compared to untreated PPMS subjects suggests a possible role for ocrelizumab in dampening CNS inflammation.
Collapse
Affiliation(s)
- Nina Ipavec
- Transfusion Medicine Division, University Hospital of Split, 21000 Split, Croatia;
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | | | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | - Krešimir Dolić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia;
- Department of Radiology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| |
Collapse
|
6
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
7
|
Deftereos SN, Vavougios GD, Bakirtzis C, Hadjigeorgiou G, Grigoriadis N. Effects of High Efficacy Multiple Sclerosis Disease Modifying Drugs on the Immune Synapse: A Systematic Review. Curr Pharm Des 2024; 30:536-551. [PMID: 38343058 DOI: 10.2174/0113816128288102240131053205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Co-signaling and adhesion molecules are important elements for creating immune synapses between T lymphocytes and antigen-presenting cells; they positively or negatively regulate the interaction between a T cell receptor with its cognate antigen, presented by the major histocompatibility complex. OBJECTIVES We conducted a systematic review on the effects of High Efficacy Disease Modifying Drugs (HEDMDs) for Multiple Sclerosis (MS) on the co-signaling and adhesion molecules that form the immune synapse. METHODS We searched EMBASE, MEDLINE, and other sources to identify clinical or preclinical reports on the effects of HEDMDs on co-signaling and adhesion molecules that participate in the formation of immune synapses in patients with MS or other autoimmune disorders. We included reports on cladribine tablets, anti- CD20 monoclonal antibodies, S1P modulators, inhibitors of Bruton's Tyrosine Kinase, and natalizumab. RESULTS In 56 eligible reports among 7340 total publications, limited relevant evidence was uncovered. Not all co-signaling and adhesion molecules have been studied in relation to every HEDMD, with more data being available on the anti-CD20 monoclonal antibodies (that affect CD80, CD86, GITR and TIGIT), cladribine tablets (affecting CD28, CD40, ICAM-1, LFA-1) and the S1P modulators (affecting CD86, ICAM-1 and LFA-1) and less on Natalizumab (affecting CD80, CD86, CD40, LFA-1, VLA-4) and Alemtuzumab (affecting GITR and CTLA-4). CONCLUSION The puzzle of HEDMD effects on the immune synapse is far from complete. The available evidence suggests that distinguishing differences exist between drugs and are worth pursuing further.
Collapse
Affiliation(s)
- Spyros N Deftereos
- Second Department of Neurology, Special Unit for Biomedical Research and Education (S.U.B.R.E.), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Merck S.A., Greece, an Affiliate of Merck KGaA, Darmstadt, Germany
| | - George D Vavougios
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Christos Bakirtzis
- Second Department of Neurology, Special Unit for Biomedical Research and Education (S.U.B.R.E.), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Hadjigeorgiou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Cyprus Academy of Sciences, Letters and Arts, Nicosia, Cyprus
| | - Nikolaos Grigoriadis
- Second Department of Neurology, Special Unit for Biomedical Research and Education (S.U.B.R.E.), School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Heydari AA, Sindi SS. Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. BIOPHYSICS REVIEWS 2023; 4:011306. [PMID: 38505815 PMCID: PMC10903438 DOI: 10.1063/5.0091135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/19/2022] [Indexed: 03/21/2024]
Abstract
Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.
Collapse
|
10
|
A Comprehensive Exploration of the Transcriptomic Landscape in Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2023; 24:ijms24021448. [PMID: 36674968 PMCID: PMC9862618 DOI: 10.3390/ijms24021448] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Multiple Sclerosis (MS) is, to date, an incurable disease of the nervous system characterized by demyelination. Several genetic mutations are associated with the disease but they are not able to explain all the diagnosticated cases. Thus, it is suggested that altered gene expression may play a role in human pathologies. In this review, we explored the role of the transcriptomic profile in MS to investigate the main altered biological processes and pathways involved in the disease. Herein, we focused our attention on RNA-seq methods that in recent years are producing a huge amount of data rapidly replacing microarrays, both with bulk and single-cells. The studies evidenced that different MS stages have specific molecular signatures and non-coding RNAs may play a key role in the disease. Sex-dependence was observed before and after treatments used to alleviate symptomatology activating different biological processes in a drug-dependent manner. New pathways, such as neddylation, were found deregulated in MS and inflammation was linked to neuron degeneration areas through spatial transcriptomics. It is evident that the use of RNA-seq in the study of complex pathologies, such as MS, is a valid strategy to shed light on new involved mechanisms.
Collapse
|
11
|
Basile MS, Bramanti P, Mazzon E. The Role of Cytotoxic T-Lymphocyte Antigen 4 in the Pathogenesis of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081319. [PMID: 35893056 PMCID: PMC9394409 DOI: 10.3390/genes13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder of the central nervous system that presents heterogeneous clinical manifestations and course. It has been shown that different immune checkpoints, including Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), can be involved in the pathogenesis of MS. CTLA-4 is a critical regulator of T-cell homeostasis and self-tolerance and represents a key inhibitor of autoimmunity. In this scopingreview, we resume the current preclinical and clinical studies investigating the role of CTLA-4 in MS with different approaches. While some of these studies assessed the expression levels of CTLA-4 on T cells by comparing MS patients with healthy controls, others focused on the evaluation of the effects of common MS therapies on CTLA-4 modulation or on the study of the CTLA-4 blockade or deficiency in experimental autoimmune encephalomyelitis models. Moreover, other studies in this field aimed to discover if the CTLA-4 gene might be involved in the predisposition to MS, whereas others evaluated the effects of treatment with CTLA4-Ig in MS. Although these results are of great interest, they are often conflicting. Therefore, further studies are needed to reveal the exact mechanisms underlying the action of a crucial immune checkpoint such as CTLA-4 in MS to identify novel immunotherapeutic strategies for MS patients.
Collapse
|
12
|
Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol 2022; 376:104532. [DOI: 10.1016/j.cellimm.2022.104532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
|
13
|
The expression pattern of VISTA in the PBMCs of relapsing-remitting multiple sclerosis patients: A single-cell RNA sequencing-based study. Biomed Pharmacother 2022; 148:112725. [DOI: 10.1016/j.biopha.2022.112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
|
14
|
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Baradaran B. Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 2022; 49:43. [PMID: 35137914 DOI: 10.3892/ijmm.2022.5098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
Collapse
Affiliation(s)
- Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran
| | - Niloufar Sadat Nourbakhsh
- Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, 'Aldo Moro' University of Bari Medical School, I‑70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran
| |
Collapse
|
15
|
Baryła M, Semeniuk-Wojtaś A, Róg L, Kraj L, Małyszko M, Stec R. Oncometabolites-A Link between Cancer Cells and Tumor Microenvironment. BIOLOGY 2022; 11:biology11020270. [PMID: 35205136 PMCID: PMC8869548 DOI: 10.3390/biology11020270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is the space between healthy tissues and cancer cells, created by the extracellular matrix, blood vessels, infiltrating cells such as immune cells, and cancer-associated fibroblasts. These components constantly interact and influence each other, enabling cancer cells to survive and develop in the host organism. Accumulated intermediate metabolites favoring dysregulation and compensatory responses in the cell, called oncometabolites, provide a method of communication between cells and might also play a role in cancer growth. Here, we describe the changes in metabolic pathways that lead to accumulation of intermediate metabolites: lactate, glutamate, fumarate, and succinate in the tumor and their impact on the tumor microenvironment. These oncometabolites are not only waste products, but also link all types of cells involved in tumor survival and progression. Oncometabolites play a particularly important role in neoangiogenesis and in the infiltration of immune cells in cancer. Oncometabolites are also associated with a disrupted DNA damage response and make the tumor microenvironment more favorable for cell migration. The knowledge summarized in this article will allow for a better understanding of associations between therapeutic targets and oncometabolites, as well as the direct effects of these particles on the formation of the tumor microenvironment. In the future, targeting oncometabolites could improve treatment standards or represent a novel method for fighting cancer.
Collapse
Affiliation(s)
- Maksymilian Baryła
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| | - Aleksandra Semeniuk-Wojtaś
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
- Correspondence:
| | - Letycja Róg
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| | - Leszek Kraj
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Maciej Małyszko
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.B.); (L.R.); (L.K.); (M.M.); (R.S.)
| |
Collapse
|
16
|
Alemohammad H, Najafzadeh B, Asadzadeh Z, Baghbanzadeh A, Ghorbaninezhad F, Najafzadeh A, Safarpour H, Bernardini R, Brunetti O, Sonnessa M, Fasano R, Silvestris N, Baradaran B. The importance of immune checkpoints in immune monitoring: A future paradigm shift in the treatment of cancer. Biomed Pharmacother 2021; 146:112516. [PMID: 34906767 DOI: 10.1016/j.biopha.2021.112516] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
The growth and development of cancer are directly correlated to the suppression of the immune system. A major breakthrough in cancer immunotherapy depends on various mechanisms to detect immunosuppressive factors that inhibit anti-tumor immune responses. Immune checkpoints are expressed on many immune cells such as T-cells, regulatory B cells (Bregs), dendritic cells (DCs), natural killer cells (NKs), regulatory T (Tregs), M2-type macrophages, and myeloid-derived suppressor cells (MDSCs). Immune inhibitory molecules, including CTLA-4, TIM-3, TIGIT, PD-1, and LAG-3, normally inhibit immune responses via negatively regulating immune cell signaling pathways to prevent immune injury. However, the up-regulation of inhibitory immune checkpoints during tumor progression on immune cells suppresses anti-tumor immune responses and promotes immune escape in cancer. It has recently been indicated that cancer cells can up-regulate various pathways of the immune checkpoints. Therefore, targeting immune inhibitory molecules through antibodies or miRNAs is a promising therapeutic strategy and shows favorable results. Immune checkpoint inhibitors (ICIs) are introduced as a new immunotherapy strategy that enhance immune cell-induced antitumor responses in many patients. In this review, we highlighted the function of each immune checkpoint on different immune cells and therapeutic strategies aimed at using monoclonal antibodies and miRNAs against inhibitory receptors. We also discussed current challenges and future strategies for maximizing these FDA-approved immunosuppressants' effectiveness and clinical success in cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arezoo Najafzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Oronzo Brunetti
- Medical Oncological Unite, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Margherita Sonnessa
- Functional Biomorphology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Rossella Fasano
- Medical Oncological Unite, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncological Unite, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Immunotherapy for Hepatocellular Carcinoma: New Prospects for the Cancer Therapy. Life (Basel) 2021; 11:life11121355. [PMID: 34947886 PMCID: PMC8704694 DOI: 10.3390/life11121355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. HCC patients may benefit from liver transplantation, hepatic resection, radiofrequency ablation, transcatheter arterial chemoembolization, and targeted therapies. The increased infiltration of immunosuppressive immune cells and the elevated expression of immunosuppressive factors in the HCC microenvironment are the main culprits of the immunosuppressive nature of the HCC milieu. The immunosuppressive tumor microenvironment can substantially attenuate antitumoral immune responses and facilitate the immune evasion of tumoral cells. Immunotherapy is an innovative treatment method that has been promising in treating HCC. Immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and cell-based (primarily dendritic cells) and non-cell-based vaccines are the most common immunotherapeutic approaches for HCC treatment. However, these therapeutic approaches have not generally induced robust antitumoral responses in clinical settings. To answer to this, growing evidence has characterized immune cell populations and delineated intercellular cross-talk using single-cell RNA sequencing (scRNA-seq) technologies. This review aims to discuss the various types of tumor-infiltrating immune cells and highlight their roles in HCC development. Besides, we discuss the recent advances in immunotherapeutic approaches for treating HCC, e.g., ICIs, dendritic cell (DC)-based vaccines, non-cell-based vaccines, oncolytic viruses (OVs), and ACT. Finally, we discuss the potentiality of scRNA-seq to improve the response rate of HCC patients to immunotherapeutic approaches.
Collapse
|
18
|
Derakhshani A, Safarpour H, Abdoli Shadbad M, Hemmat N, Leone P, Asadzadeh Z, Pashazadeh M, Baradaran B, Racanelli V. The Role of Hemoglobin Subunit Delta in the Immunopathy of Multiple Sclerosis: Mitochondria Matters. Front Immunol 2021; 12:709173. [PMID: 34504491 PMCID: PMC8421544 DOI: 10.3389/fimmu.2021.709173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 01/11/2023] Open
Abstract
Background Although the exact pathophysiology of MS has not been identified, mitochondrial stress can be one of the culprits in MS development. Herein, we have applied microarray analysis, single-cell sequencing analysis, and ex vivo study to elucidate the role of mitochondrial stress in PBMCs of MS patients. Methods For this purpose, we analyzed the GSE21942 and GSE138266 datasets to identify the DEGs and hub genes in the PBMCS of MS patients and describe the expression of shared genes in the different immune cells. The GO pathway analysis of DEGs and turquoise module genes were conducted to shed light on their biological significance. To validate the obtained results, the gene expression of HBD, as the most remarkable DEG in the PBMCS of affected patients, was measured in the PBMCS of healthy donors, treatment-naïve MS patients, and MS patients treated with GA, fingolimod, DMF, and IFNβ-1α. Results Based on WGCNA and DEGs analysis, HBD, HBM, SLC4A1, LILRA5, SLC25A37, SELENBP1, ALYREF, SNRNP40, and HINT3 are the identified common genes in the PMBCS. Using single-cell sequencing analysis on PBMCS, we have characterized various cell populations in MS and illustrated the common gene expression on the different immune cells. Furthermore, GO pathway analysis of DEGs, and turquoise module genes have indicated that these genes are involved in immune responses, myeloid cell activation, leukocyte activation, oxygen carrier activity, and replication fork processing bicarbonate transport pathways. Our ex vivo investigation has shown that HBD expression in the treatment-naïve RRMS patients is significantly increased compared to healthy donors. Of interest, immunomodulatory therapies with fingolimod, DMF, and IFNβ-1α have significantly decreased HBD expression. Conclusion HBD is one of the remarkably up-regulated genes in the PBMCS of MS patients. HBD is substantially up-regulated in treatment-naïve MS patients, and immunomodulatory therapies with fingolimod, DMF, and IFNβ-1α can remarkably down-regulate HBD expression. Based on the currently available evidence, the cytoprotective nature of HBD against oxidative stress can be the underlying reason for HBD up-regulation in MS. Nevertheless, further investigations are needed to shed light on the molecular mechanisms of HBD in the oxidative stress of MS patients.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Laboratory of Experimental Pharmacology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Pashazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,*Correspondence: Vito Racanelli, ; Behzad Baradaran,
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy,*Correspondence: Vito Racanelli, ; Behzad Baradaran,
| |
Collapse
|
19
|
Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, Silvestris N, Baradaran B. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021; 9:1075. [PMID: 34572263 PMCID: PMC8467932 DOI: 10.3390/biomedicines9091075] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.
Collapse
Affiliation(s)
- Shima Makaremi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak 3848176941, Iran;
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Alessandro Sgambato
- Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 5972362 Rome, Italy;
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 5972362 Rome, Italy
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Antonella Argentiero
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Oronzo Brunetti
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95121 Catania, Italy;
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| |
Collapse
|