1
|
Santiago-Lamelas L, Dos Santos-Sobrín R, Carracedo Á, Castro-Santos P, Díaz-Peña R. Utility of polygenic risk scores to aid in the diagnosis of rheumatic diseases. Best Pract Res Clin Rheumatol 2024; 38:101973. [PMID: 38997822 DOI: 10.1016/j.berh.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Rheumatic diseases (RDs) are characterized by autoimmunity and autoinflammation and are recognized as complex due to the interplay of multiple genetic, environmental, and lifestyle factors in their pathogenesis. The rapid advancement of genome-wide association studies (GWASs) has enabled the identification of numerous single nucleotide polymorphisms (SNPs) associated with RD susceptibility. Based on these SNPs, polygenic risk scores (PRSs) have emerged as promising tools for quantifying genetic risk in this disease group. This chapter reviews the current status of PRSs in assessing the risk of RDs and discusses their potential to improve the accuracy of the diagnosis of these complex diseases through their ability to discriminate among different RDs. PRSs demonstrate a high discriminatory capacity for various RDs and show potential clinical utility. As GWASs continue to evolve, PRSs are expected to enable more precise risk stratification by integrating genetic, environmental, and lifestyle factors, thereby refining individual risk predictions and advancing disease management strategies.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Raquel Dos Santos-Sobrín
- Reumatología, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
2
|
Zalesak M, Danisovic L, Harsanyi S. Psoriasis and Psoriatic Arthritis-Associated Genes, Cytokines, and Human Leukocyte Antigens. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:815. [PMID: 38792999 PMCID: PMC11123327 DOI: 10.3390/medicina60050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
In recent years, research has intensified in exploring the genetic basis of psoriasis (PsO) and psoriatic arthritis (PsA). Genome-wide association studies (GWASs), including tools like ImmunoChip, have significantly deepened our understanding of disease mechanisms by pinpointing risk-associated genetic loci. These efforts have elucidated biological pathways involved in PsO pathogenesis, particularly those related to the innate immune system, antigen presentation, and adaptive immune responses. Specific genetic loci, such as TRAF3IP2, REL, and FBXL19, have been identified as having a significant impact on disease development. Interestingly, different genetic variants at the same locus can predispose individuals to either PsO or PsA (e.g., IL23R and deletion of LCE3B and LCE3C), with some variants being uniquely linked to PsA (like HLA B27 on chromosome 6). This article aims to summarize known and new data on the genetics of PsO and PsA, their associated genes, and the involvement of the HLA system and cytokines.
Collapse
Affiliation(s)
- Marek Zalesak
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia (L.D.)
- National Institute of Rheumatic Diseases, Nábrežie Ivana Krasku 4, 921 12 Piestany, Slovakia
| |
Collapse
|
3
|
Atta A, Salem MM, El-Said KS, Mohamed TM. Mechanistic role of quercetin as inhibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell Mol Biol Lett 2024; 29:14. [PMID: 38225555 PMCID: PMC10790468 DOI: 10.1186/s11658-024-00531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving T and B lymphocytes. Autoantibodies contribute to joint deterioration and worsening symptoms. Adenosine deaminase (ADA), an enzyme in purine metabolism, influences adenosine levels and joint inflammation. Inhibiting ADA could impact RA progression. Intracellular ATP breakdown generates adenosine, which increases in hypoxic and inflammatory conditions. Lymphocytes with ADA play a role in RA. Inhibiting lymphocytic ADA activity has an immune-regulatory effect. Synovial fluid levels of ADA are closely associated with the disease's systemic activity, making it a useful parameter for evaluating joint inflammation. Flavonoids, such as quercetin (QUE), are natural substances that can inhibit ADA activity. QUE demonstrates immune-regulatory effects and restores T-cell homeostasis, making it a promising candidate for RA therapy. In this review, we will explore the impact of QUE in suppressing ADA and reducing produced the inflammation in RA, including preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Tesolin P, Bertinetto FE, Sonaglia A, Cappellani S, Concas MP, Morgan A, Ferrero NM, Zabotti A, Gasparini P, Amoroso A, Quartuccio L, Girotto G. High Throughput Genetic Characterisation of Caucasian Patients Affected by Multi-Drug Resistant Rheumatoid or Psoriatic Arthritis. J Pers Med 2022; 12:jpm12101618. [PMID: 36294757 PMCID: PMC9605087 DOI: 10.3390/jpm12101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Rheumatoid and psoriatic arthritis (RA and PsA) are inflammatory rheumatic disorders characterised by a multifactorial etiology. To date, the genetic contributions to the disease onset, severity and drug response are not clearly defined, and despite the development of novel targeted therapies, ~10% of patients still display poor treatment responses. We characterised a selected cohort of eleven non-responder patients aiming to define the genetic contribution to drug resistance. An accurate clinical examination of the patients was coupled with several high-throughput genetic testing, including HLA typing, SNPs-array and Whole Exome Sequencing (WES). The analyses revealed that all the subjects carry very rare HLA phenotypes which contain HLA alleles associated with RA development (e.g., HLA-DRB1*04, DRB1*10:01 and DRB1*01). Additionally, six patients also carry PsA risk alleles (e.g., HLA-B*27:02 and B*38:01). WES analysis and SNPs-array revealed 23 damaging variants with 18 novel “drug-resistance” RA/PsA candidate genes. Eight patients carry likely pathogenic variants within common genes (CYP21A2, DVL1, PRKDC, ORAI1, UGT2B17, MSR1). Furthermore, “private” damaging variants were identified within 12 additional genes (WNT10A, ABCB7, SERPING1, GNRHR, NCAPD3, CLCF1, HACE1, NCAPD2, ESR1, SAMHD1, CYP27A1, CCDC88C). This multistep approach highlighted novel RA/PsA candidate genes and genotype-phenotype correlations potentially useful for clinicians in selecting the best therapeutic strategy.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Francesca Eleonora Bertinetto
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Arianna Sonaglia
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Stefania Cappellani
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
- Correspondence: ; Tel.: +39-0403785539
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Norma Maria Ferrero
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Alen Zabotti
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, and Immunogenetic and Transplant Biology Service, University Hospital “Città della Salute e della Scienza”, 10124 Turin, Italy
| | - Luca Quartuccio
- Division of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, 33100 Udine, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Institute for Maternal and Child Health—IRCCS, Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|