1
|
Record CJ, Pipis M, Skorupinska M, Blake J, Poh R, Polke JM, Eggleton K, Nanji T, Zuchner S, Cortese A, Houlden H, Rossor AM, Laura M, Reilly MM. Whole genome sequencing increases the diagnostic rate in Charcot-Marie-Tooth disease. Brain 2024; 147:3144-3156. [PMID: 38481354 PMCID: PMC11370804 DOI: 10.1093/brain/awae064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/04/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009 to 2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome sequencing and WGS and, latterly, WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. In summary, 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100 000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment, leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre and has benefitted from the use of WGS, particularly access to the raw data. However, almost one-quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.
Collapse
Affiliation(s)
- Christopher J Record
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Menelaos Pipis
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mariola Skorupinska
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Julian Blake
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical Neurophysiology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Roy Poh
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - James M Polke
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kelly Eggleton
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Tina Nanji
- Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Matilde Laura
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
2
|
Shchagina O, Murtazina A, Chausova P, Orlova M, Dadali E, Kurbatov S, Kutsev S, Polyakov A. Genetic Landscape of SH3TC2 variants in Russian patients with Charcot-Marie-Tooth disease. Front Genet 2024; 15:1381915. [PMID: 38903759 PMCID: PMC11187259 DOI: 10.3389/fgene.2024.1381915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Charcot-Marie-Tooth disease type 4C (CMT4C) OMIM#601596 stands out as one of the most prevalent forms of recessive motor sensory neuropathy worldwide. This disorder results from biallelic pathogenic variants in the SH3TC2 gene. Methods Within a cohort comprising 700 unrelated Russian patients diagnosed with Charcot-Marie-Tooth disease, we conducted a gene panel analysis encompassing 21 genes associated with hereditary neuropathies. Among the cohort, 394 individuals exhibited demyelinating motor and sensory neuropathy. Results and discussion Notably, 10 cases of CMT4C were identified within this cohort. The prevalence of CMT4C among Russian demyelinating CMT patients lacking the PMP22 duplication is estimated at 2.5%, significantly differing from observations in European populations. In total, 4 novel and 9 previously reported variants in the SH3TC2 gene were identified. No accumulation of a major variant was detected. Three previously reported variants, c.2860C>T p. (Arg954*), p. (Arg658Cys) and c.279G>A p. (Lys93Lys), recurrently detected in unrelated families. Nucleotide alteration p. (Arg954*) is present in most of our patients (30%).
Collapse
Affiliation(s)
| | | | | | - Mariya Orlova
- Research Centre for Medical Genetics, Moscow, Russia
| | - Elena Dadali
- Research Centre for Medical Genetics, Moscow, Russia
| | - Sergei Kurbatov
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University named After N.N. Burdenko, Voronezh, Russia
- Saratov State Medical University, Saratov, Russia
| | - Sergey Kutsev
- Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
3
|
Benslimane N, Loret C, Chazelas P, Favreau F, Faye PA, Lejeune F, Lia AS. Readthrough Activators and Nonsense-Mediated mRNA Decay Inhibitor Molecules: Real Potential in Many Genetic Diseases Harboring Premature Termination Codons. Pharmaceuticals (Basel) 2024; 17:314. [PMID: 38543100 PMCID: PMC10975577 DOI: 10.3390/ph17030314] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 11/12/2024] Open
Abstract
Nonsense mutations that generate a premature termination codon (PTC) can induce both the accelerated degradation of mutated mRNA compared with the wild type version of the mRNA or the production of a truncated protein. One of the considered therapeutic strategies to bypass PTCs is their "readthrough" based on small-molecule drugs. These molecules promote the incorporation of a near-cognate tRNA at the PTC position through the native polypeptide chain. In this review, we detailed the various existing strategies organized according to pharmacological molecule types through their different mechanisms. The positive results that followed readthrough molecule testing in multiple neuromuscular disorder models indicate the potential of this approach in peripheral neuropathies.
Collapse
Affiliation(s)
- Nesrine Benslimane
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Camille Loret
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
| | - Pauline Chazelas
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Frédéric Favreau
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
| | - Fabrice Lejeune
- University of Lille, Centre National de la Recherche Scientifique, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Anne-Sophie Lia
- GEIST Institute, University of Limoges, NeurIT UR 20218, F-87000 Limoges, France; (C.L.); (P.C.); (F.F.); (P.-A.F.); (A.-S.L.)
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Biochemistry and Molecular Genetics, F-87000 Limoges, France
- Centre Hospitalo-Universitaire (CHU) Limoges, Department of Bioinformatics, F-87000 Limoges, France
| |
Collapse
|
4
|
Pyromali I, Richard L, Derouault P, Vallat JM, Ghorab K, Magdelaine C, Sturtz F, Favreau F, Lia AS. The First Large Deletion of ATL3 Identified in a Patient Presenting with a Sensory Polyneuropathy. Biomedicines 2023; 11:1565. [PMID: 37371660 DOI: 10.3390/biomedicines11061565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Hereditary sensory neuropathies (HSN) are a heterogenous group of sensory neuropathies. Mutations in ATL3 have been described in patients presenting with hereditary sensory neuropathy IF (HSN1F), a subtype of HSN. Herein, by analyzing targeted-NGS data of a patient presenting with sensory neuropathy symptoms using the CovCopCan bioinformatic tool, we discovered the presence of a deletion of around 3kb in ATL3 from Chr11:63,401,422 to Chr11:63,398,182. This deletion affects ATL3 exons 11 and 12 and could lead to the mutation c.(1036-861_1539+329del), p.(Ala346_Gln513del). In addition, an analysis of the breakpoints' sequences revealed the presence of Alu transposable elements at the position of the breakpoints, which pointed to a possible erroneous recombination event following a non-allelic-homologous-recombination mechanism in this area. Moreover, electronic microscopy analysis of the patient's nerve biopsy revealed a severe rarefaction of the myelinated fibers, a demyelinating-remyelinating process, and an abnormal aspect of the endoplasmic reticulum. These findings suggest that this structural variation could potentially be responsible for the HSN symptoms of the patient. Research of structural variations in ATL3 in numerous other patients presenting similar symptoms should be broadly investigated in order to improve patients' diagnoses.
Collapse
Affiliation(s)
- Ioanna Pyromali
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
| | - Laurence Richard
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Paco Derouault
- Service de Bioinformatique, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Jean-Michel Vallat
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Karima Ghorab
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Corinne Magdelaine
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Frédéric Favreau
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| | - Anne-Sophie Lia
- UR 20218, NeurIT, Faculty of Medicine and Pharmacy, University of Limoges, F-87000 Limoges, France
- Service de Bioinformatique, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
- Service de Biochimie et de Génétique Moléculaire, Centre Hospitalier Universitaire (CHU) Limoges, F-87000 Limoges, France
| |
Collapse
|
5
|
Zhang X, Qiao Y, Han R, Gao Y, Yang X, Zhang Y, Wan Y, Yu W, Pan X, Xing J. A Charcot-Marie-Tooth-Causing Mutation in HSPB1 Decreases Cell Adaptation to Repeated Stress by Disrupting Autophagic Clearance of Misfolded Proteins. Cells 2022; 11:cells11182886. [PMID: 36139461 PMCID: PMC9496658 DOI: 10.3390/cells11182886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited neurodegenerative disorder with selective degeneration of peripheral nerves. Despite advances in identifying CMT-causing genes, the underlying molecular mechanism, particularly of selective degeneration of peripheral neurons remains to be elucidated. Since peripheral neurons are sensitive to multiple stresses, we hypothesized that daily repeated stress might be an essential contributor to the selective degeneration of peripheral neurons induced by CMT-causing mutations. Here, we mainly focused on the biological effects of the dominant missense mutation (S135F) in the 27-kDa small heat-shock protein HSPB1 under repeated heat shock. HSPB1S135F presented hyperactive binding to both α-tubulin and acetylated α-tubulin during repeated heat shock when compared with the wild type. The aberrant interactions with tubulin prevented microtubule-based transport of heat shock-induced misfolded proteins for the formation of perinuclear aggresomes. Furthermore, the transport of autophagosomes along microtubules was also blocked. These results indicate that the autophagy pathway was disrupted, leading to an accumulation of ubiquitinated protein aggregates and a significant decrease in cell adaptation to repeated stress. Our findings provide novel insights into the molecular mechanisms of HSPB1S135F-induced selective degeneration of peripheral neurons and perspectives for targeting autophagy as a promising therapeutic strategy for CMT neuropathy.
Collapse
Affiliation(s)
- Xuelian Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yaru Qiao
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ronglin Han
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yingjie Gao
- Department of Medicine Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xun Yang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Zhang
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
- Correspondence: (J.X.); (X.P.); (W.Y.)
| | - Xianchao Pan
- Department of Medicine Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Correspondence: (J.X.); (X.P.); (W.Y.)
| | - Juan Xing
- Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Correspondence: (J.X.); (X.P.); (W.Y.)
| |
Collapse
|