1
|
Janus A, Dumas D, Le Douce J, Marie S, Pasculli G, Bambury P, Lemarchant S, Kremer P, Godfrin Y. Safety, Tolerability and Pharmacokinetic-Pharmacodynamic Relationship of NX210c Peptide in Healthy Elderly Volunteers: Randomized, Placebo-Controlled, Double-Blind, Multiple Ascending Dose Study. Neurol Ther 2024:10.1007/s40120-024-00691-w. [PMID: 39708220 DOI: 10.1007/s40120-024-00691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Blood-brain barrier (BBB) integrity is fundamental to brain homeostasis, enabling control of substance exchange and safeguarding neurons against harmful toxins, pathogens, and immune cells that lead to dysregulation and inflammation involved in ageing and neurodegenerative diseases (NDD). The cyclized peptide NX210c is a thrombospondin type 1 repeat analogue derived from subcommissural organ-spondin. It exerts beneficial effects in animal models of NDD owing to its effects on neurons and endothelial cells. NX210c demonstrated a good safety profile in a single ascending dose phase 1a clinical study. The present multiple ascending dose phase 1b study was performed to evaluate the tolerability and pharmacological effects of repeated doses of NX210c in healthy elderly (age: > 55 years) volunteers. METHODS This was a randomized, placebo-controlled, double-blind study (EudraCT No. 2022-002868-76), investigating safety/tolerability, pharmacokinetics, and pharmacodynamics (including blood and cerebrospinal fluid biomarkers). Participants received 5 or 10 mg/kg NX210c or placebo (10-min infusion) thrice weekly for 4 weeks in an ascending dose fashion. Follow-up was conducted 2 weeks after last dosing. RESULTS The investigation included 29 participants. No serious adverse events were recorded and all adverse events were mild. Dedicated central nervous system testing did not reveal neurotoxicity. Biomarker evaluation showed a statistically significant reduction in blood claudin-5 and a trend toward reduction of blood homocysteine. In silico data modelling revealed salient pharmacokinetic-pharmacodynamic relationships, including reduction of claudin-5, neurofilament light chain, and SPARC-like protein 1 release, and degradation of homocysteine. CONCLUSION Multiple doses of NX210c exhibited a good safety profile, showed non-cumulative pharmacokinetics, and exerted pharmacodynamic effects on biomarkers linked to BBB integrity. The effects of NX210c on claudin-5 and biomarkers influencing BBB integrity-and the overarching brain protection it offers-provide a novel therapeutic strategy targeting an underlying driver of neurodegenerative conditions for which disease-modifying treatments are limited or not available.
Collapse
Affiliation(s)
- Annette Janus
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France.
| | - Daniël Dumas
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
- Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Juliette Le Douce
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Sébastien Marie
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | | | | | - Sighild Lemarchant
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Philip Kremer
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
- Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Yann Godfrin
- Axoltis Pharma, Bioparc Laennec, 60 Avenue Rockefeller, 69008, Lyon, France
- Godfrin Life-Sciences, Caluire-Et-Cuire, France
| |
Collapse
|
2
|
Perolina E, Meissner S, Raos B, Harland B, Thakur S, Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv Drug Deliv Rev 2024; 208:115274. [PMID: 38452815 DOI: 10.1016/j.addr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.
Collapse
Affiliation(s)
- Ederlyn Perolina
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Sachin Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
3
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
4
|
Scholpa NE, Simmons EC, Thompson AD, Carroll SS, Schnellmann RG. 5-HT 1F receptor agonism induces mitochondrial biogenesis and increases cellular function in brain microvascular endothelial cells. Front Cell Neurosci 2024; 18:1365158. [PMID: 38510106 PMCID: PMC10952819 DOI: 10.3389/fncel.2024.1365158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Vascular and mitochondrial dysfunction are well-established consequences of multiple central nervous system (CNS) disorders, including neurodegenerative diseases and traumatic injuries. We previously reported that 5-hydroxytryptamine 1F receptor (5-HT1FR) agonism induces mitochondrial biogenesis (MB) in multiple organ systems, including the CNS. Methods Lasmiditan is a selective 5-HT1FR agonist that is FDA-approved for the treatment of migraines. We have recently shown that lasmiditan treatment induces MB, promotes vascular recovery and improves locomotor function in a mouse model of spinal cord injury (SCI). To investigate the mechanism of this effect, primary cerebral microvascular endothelial cells from C57bl/6 mice (mBMEC) were used. Results Lasmiditan treatment increased the maximal oxygen consumption rate, mitochondrial proteins and mitochondrial density in mBMEC, indicative of MB induction. Lasmiditan also enhanced endothelial cell migration and tube formation, key components of angiogenesis. Trans-endothelial electrical resistance (TEER) and tight junction protein expression, including claudin-5, were also increased with lasmiditan, suggesting improved barrier function. Finally, lasmiditan treatment decreased phosphorylated VE-Cadherin and induced activation of the Akt-FoxO1 pathway, which decreases FoxO1-mediated inhibition of claudin-5 transcription. Discussion These data demonstrate that lasmiditan induces MB and enhances endothelial cell function, likely via the VE-Cadherin-Akt-FoxO1-claudin-5 signaling axis. Given the importance of mitochondrial and vascular dysfunction in neuropathologies, 5-HT1FR agonism may have broad therapeutic potential to address multiple facets of disease progression by promoting MB and vascular recovery.
Collapse
Affiliation(s)
- Natalie E. Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
| | - Epiphani C. Simmons
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Austin D. Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
| | - Seth S. Carroll
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Rick G. Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
- Southern Arizona VA Health Care System, Tucson, AZ, United States
- Department of Neurosciences, College of Medicine, University of Arizona, Tucson, AZ, United States
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Lockard G, Gordon J, Schimmel S, El Sayed B, Monsour M, Garbuzova‐Davis S, Borlongan CV. Attenuation of amyotrophic lateral sclerosis via stem cell and extracellular vesicle therapy: An updated review. NEUROPROTECTION 2023; 1:130-138. [PMID: 38188233 PMCID: PMC10766415 DOI: 10.1002/nep3.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 01/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly fatal neurological disease characterized by upper and lower motor neuron degeneration. Though typically idiopathic, familial forms of ALS are commonly comprised of a superoxide dismutase 1 (SOD1) mutation. Basic science frequently utilizes SOD1 models in vitro and in vivo to replicate ALS conditions. Therapies are sparse; those that exist on the market extend life minimally, thus driving the demand for research to identify novel therapeutics. Transplantation of stem cells is a promising approach for many diseases and has shown efficacy in SOD1 models and clinical trials. The underlying mechanism for stem cell therapy presents an exciting venue for research investigations. Most notably, the paracrine actions of stem cell-derived extracellular vesicles (EVs) have been suggested as a potent mitigating factor. This literature review focuses on the most recent preclinical research investigating cell-free methods for treating ALS. Various avenues are being explored, differing on the EV contents (protein, microRNA, etc.) and on the cell target (astrocyte, endothelial cell, motor neuron-like cells, etc.), and both molecular and behavioral outcomes are being examined. Unfortunately, EVs may also play a role in propagating ALS pathology. Nonetheless, the overarching goal remains clear; to identify efficient cell-free techniques to attenuate the deadly consequences of ALS.
Collapse
Affiliation(s)
- Gavin Lockard
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Jonah Gordon
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Samantha Schimmel
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Bassel El Sayed
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Molly Monsour
- University of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Svitlana Garbuzova‐Davis
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain RepairUniversity of South Florida Morsani College of MedicineTampaFloridaUSA
| |
Collapse
|
6
|
Audrain M, Egesipe AL, Tentillier N, Font L, Ratnam M, Mottier L, Clavel M, Le Roux-Bourdieu M, Fenyi A, Ollier R, Chevalier E, Guilhot F, Fuchs A, Piorkowska K, Carlyle B, Arnold SE, Berry JD, Luthi-Carter R, Adolfsson O, Pfeifer A, Kosco-Vilbois M, Seredenina T, Afroz T. Targeting amyotrophic lateral sclerosis by neutralizing seeding-competent TDP-43 in CSF. Brain Commun 2023; 5:fcad306. [PMID: 38025276 PMCID: PMC10644982 DOI: 10.1093/braincomms/fcad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to the propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for the aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of the pharmacokinetic/pharmacodynamic effect for the monoclonal antibody, ACI-5891.9, in vivo and in vitro confirmed that a CSF concentration of ≍1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.
Collapse
Affiliation(s)
| | | | | | - Laure Font
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | | | | | | | - Alexis Fenyi
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | | | | | - Aline Fuchs
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | - Becky Carlyle
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Steven E Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | - Tariq Afroz
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
8
|
Alarcan H, Vourc'h P, Berton L, Benz-De Bretagne I, Piver E, Andres CR, Corcia P, Veyrat-Durebex C, Blasco H. Implication of Central Nervous System Barrier Impairment in Amyotrophic Lateral Sclerosis: Gender-Related Difference in Patients. Int J Mol Sci 2023; 24:11196. [PMID: 37446372 DOI: 10.3390/ijms241311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Central nervous system (CNS) barrier impairment has been reported in amyotrophic lateral sclerosis (ALS), highlighting its potential significance in the disease. In this context, we aim to shed light on its involvement in the disease, by determining albumin quotient (QAlb) at the time of diagnosis of ALS in a large cohort of patients. Patients from the university hospital of Tours (n = 307) were included in this monocentric, retrospective study. In total, 92 patients (30%) had elevated QAlb levels. This percentage was higher in males (43%) than in females (15%). Interestingly, QAlb was not associated with age of onset, age at sampling or diagnostic delay. However, we found an association with ALS functional rating scale-revised (ALSFRS-r) at diagnosis but this was significant only in males. The QAlb levels were not linked to the presence of a pathogenic mutation. Finally, we performed a multivariate survival analysis and found that QAlb was significantly associated with survival in male patients (HR = 2.3, 95% CI = 1.2-4.3, p = 0.009). A longitudinal evaluation of markers of barrier impairment, in combination with inflammatory biomarkers, could give insight into the involvement of CNS barrier impairment in the pathogenesis of the disease. The gender difference might guide the development of new drugs and help personalise the treatment of ALS.
Collapse
Affiliation(s)
- Hugo Alarcan
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Lise Berton
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Isabelle Benz-De Bretagne
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Eric Piver
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Christian R Andres
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
9
|
Sironi F, De Marchi F, Mazzini L, Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res Bull 2023; 194:64-81. [PMID: 36690163 DOI: 10.1016/j.brainresbull.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons and neuromuscular impairment leading to complete paralysis, respiratory failure and premature death. The pathogenesis of the disease is multifactorial and noncell-autonomous involving the central and peripheral compartments of the neuromuscular axis and the skeletal muscle. Advanced clinical trials on specific ALS-related pathways have failed to significantly slow the disease. Therapy with stem cells from different sources has provided a promising strategy to protect the motor units exerting their effect through multiple mechanisms including neurotrophic support and excitotoxicity and neuroinflammation modulation, as evidenced from preclinical studies. Several phase I and II clinical trial of ALS patients have been developed showing positive effects in terms of safety and tolerability. However, the modest results on functional improvement in ALS patients suggest that only a coordinated effort between basic and clinical researchers could solve many problems, such as selecting the ideal stem cell source, identifying their mechanism of action and expected clinical outcomes. A promising approach may be stem cells selected or engineered to deliver optimal growth factor support at multiple sites along the neuromuscular pathway. This review covers recent advances in stem cell therapies in animal models of ALS, as well as detailing the human clinical trials that have been done and are currently undergoing development.
Collapse
Affiliation(s)
- Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy.
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|