1
|
Yan ZN, Liu PR, Zhou H, Zhang JY, Liu SX, Xie Y, Wang HL, Yu JB, Zhou Y, Ni CM, Huang L, Ye ZW. Brain-computer Interaction in the Smart Era. Curr Med Sci 2024:10.1007/s11596-024-2927-6. [PMID: 39347924 DOI: 10.1007/s11596-024-2927-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
The brain-computer interface (BCI) system serves as a critical link between external output devices and the human brain. A monitored object's mental state, sensory cognition, and even higher cognition are reflected in its electroencephalography (EEG) signal. Nevertheless, unprocessed EEG signals are frequently contaminated with a variety of artifacts, rendering the analysis and elimination of impurities from the collected EEG data exceedingly challenging, not to mention the manual adjustment thereof. Over the last few decades, the rapid advancement of artificial intelligence (AI) technology has contributed to the development of BCI technology. Algorithms derived from AI and machine learning have significantly enhanced the ability to analyze and process EEG electrical signals, thereby expanding the range of potential interactions between the human brain and computers. As a result, the present BCI technology with the help of AI can assist physicians in gaining a more comprehensive understanding of their patients' physical and psychological status, thereby contributing to improvements in their health and quality of life.
Collapse
Affiliation(s)
- Zi-Neng Yan
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng-Ran Liu
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Zhou
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Yao Zhang
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Song-Xiang Liu
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Lin Wang
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-Bo Yu
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China
| | - Yu Zhou
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China
| | - Chang-Mao Ni
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China
| | - Li Huang
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, 430200, China.
| | - Zhe-Wei Ye
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Cai M, Hong J. Joint multi-feature extraction and transfer learning in motor imagery brain computer interface. Comput Methods Biomech Biomed Engin 2024:1-12. [PMID: 39286921 DOI: 10.1080/10255842.2024.2404541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Motor imagery brain computer interface (BCI) systems are considered one of the most crucial paradigms and have received extensive attention from researchers worldwide. However, the non-stationary from subject-to-subject transfer is a substantial challenge for robust BCI operations. To address this issue, this paper proposes a novel approach that integrates joint multi-feature extraction, specifically combining common spatial patterns (CSP) and wavelet packet transforms (WPT), along with transfer learning (TL) in motor imagery BCI systems. This approach leverages the time-frequency characteristics of WPT and the spatial characteristics of CSP while utilizing transfer learning to facilitate EEG identification for target subjects based on knowledge acquired from non-target subjects. Using dataset IVa from BCI Competition III, our proposed approach achieves an impressive average classification accuracy of 93.4%, outperforming five kinds of state-of-the-art approaches. Furthermore, it offers the advantage of enabling the design of various auxiliary problems to learn different aspects of the target problem from unlabeled data through transfer learning, thereby facilitating the implementation of innovative ideas within our proposed approach. Simultaneously, it demonstrates that integrating CSP and WPT while transferring knowledge from other subjects is highly effective in enhancing the average classification accuracy of EEG signals and it provides a novel solution to address subject-to-subject transfer challenges in motor imagery BCI systems.
Collapse
Affiliation(s)
- Miao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Xi'an Children's Hospital, Xi'an, China
| | - Jie Hong
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
3
|
陈 衍, 张 喆, 王 帆, 丁 鹏, 赵 磊, 伏 云. [An emerging discipline: brain-computer interfaces medicine]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:641-649. [PMID: 39218588 PMCID: PMC11366471 DOI: 10.7507/1001-5515.202310028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/24/2024] [Indexed: 09/04/2024]
Abstract
With the development of brain-computer interface (BCI) technology and its translational application in clinical medicine, BCI medicine has emerged, ushering in profound changes to the practice of medicine, while also bringing forth a series of ethical issues related to BCI medicine. BCI medicine is progressively emerging as a new disciplinary focus, yet to date, there has been limited literature discussing it. Therefore, this paper focuses on BCI medicine, firstly providing an overview of the main potential medical applications of BCI technology. It then defines the discipline, outlines its objectives, methodologies, potential efficacy, and associated translational medical research. Additionally, it discusses the ethics associated with BCI medicine, and introduces the standardized operational procedures for BCI medical applications and the methods for evaluating the efficacy of BCI medical applications. Finally, it anticipates the challenges and future directions of BCI medicine. In the future, BCI medicine may become a new academic discipline or major in higher education. In summary, this article is hoped to provide thoughts and references for the development of the discipline of BCI medicine.
Collapse
Affiliation(s)
- 衍肖 陈
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 喆 张
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 帆 王
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 鹏 丁
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 磊 赵
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 云发 伏
- 昆明理工大学 信息工程与自动化学院(昆明 650500)Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
4
|
Chen Y, Wang F, Li T, Zhao L, Gong A, Nan W, Ding P, Fu Y. Considerations and discussions on the clear definition and definite scope of brain-computer interfaces. Front Neurosci 2024; 18:1449208. [PMID: 39161655 PMCID: PMC11330831 DOI: 10.3389/fnins.2024.1449208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Brain-computer interface (BCI) is a revolutionizing human-computer interaction with potential applications in both medical and non-medical fields, emerging as a cutting-edge and trending research direction. Increasing numbers of groups are engaging in BCI research and development. However, in recent years, there has been some confusion regarding BCI, including misleading and hyped propaganda about BCI, and even non-BCI technologies being labeled as BCI. Therefore, a clear definition and a definite scope for BCI are thoroughly considered and discussed in the paper, based on the existing definitions of BCI, including the six key or essential components of BCI. In the review, different from previous definitions of BCI, BCI paradigms and neural coding are explicitly included in the clear definition of BCI provided, and the BCI user (the brain) is clearly identified as a key component of the BCI system. Different people may have different viewpoints on the definition and scope of BCI, as well as some related issues, which are discussed in the article. This review argues that a clear definition and definite scope of BCI will benefit future research and commercial applications. It is hoped that this review will reduce some of the confusion surrounding BCI and promote sustainable development in this field.
Collapse
Affiliation(s)
- Yanxiao Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Tianwen Li
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhao
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Anmin Gong
- School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xi’an, China
| | - Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Pan H, Ding P, Wang F, Li T, Zhao L, Nan W, Fu Y, Gong A. Comprehensive evaluation methods for translating BCI into practical applications: usability, user satisfaction and usage of online BCI systems. Front Hum Neurosci 2024; 18:1429130. [PMID: 38903409 PMCID: PMC11188342 DOI: 10.3389/fnhum.2024.1429130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Although brain-computer interface (BCI) is considered a revolutionary advancement in human-computer interaction and has achieved significant progress, a considerable gap remains between the current technological capabilities and their practical applications. To promote the translation of BCI into practical applications, the gold standard for online evaluation for classification algorithms of BCI has been proposed in some studies. However, few studies have proposed a more comprehensive evaluation method for the entire online BCI system, and it has not yet received sufficient attention from the BCI research and development community. Therefore, the qualitative leap from analyzing and modeling for offline BCI data to the construction of online BCI systems and optimizing their performance is elaborated, and then user-centred is emphasized, and then the comprehensive evaluation methods for translating BCI into practical applications are detailed and reviewed in the article, including the evaluation of the usability (including effectiveness and efficiency of systems), the evaluation of the user satisfaction (including BCI-related aspects, etc.), and the evaluation of the usage (including the match between the system and user, etc.) of online BCI systems. Finally, the challenges faced in the evaluation of the usability and user satisfaction of online BCI systems, the efficacy of online BCI systems, and the integration of BCI and artificial intelligence (AI) and/or virtual reality (VR) and other technologies to enhance the intelligence and user experience of the system are discussed. It is expected that the evaluation methods for online BCI systems elaborated in this review will promote the translation of BCI into practical applications.
Collapse
Affiliation(s)
- He Pan
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Tianwen Li
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhao
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Wenya Nan
- Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Anmin Gong
- School of Information Engineering, Chinese People's Armed Police Force Engineering University, Xi’an, China
| |
Collapse
|
6
|
El-Tallawy SN, Pergolizzi JV, Vasiliu-Feltes I, Ahmed RS, LeQuang JK, El-Tallawy HN, Varrassi G, Nagiub MS. Incorporation of "Artificial Intelligence" for Objective Pain Assessment: A Comprehensive Review. Pain Ther 2024; 13:293-317. [PMID: 38430433 PMCID: PMC11111436 DOI: 10.1007/s40122-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
Pain is a significant health issue, and pain assessment is essential for proper diagnosis, follow-up, and effective management of pain. The conventional methods of pain assessment often suffer from subjectivity and variability. The main issue is to understand better how people experience pain. In recent years, artificial intelligence (AI) has been playing a growing role in improving clinical diagnosis and decision-making. The application of AI offers promising opportunities to improve the accuracy and efficiency of pain assessment. This review article provides an overview of the current state of AI in pain assessment and explores its potential for improving accuracy, efficiency, and personalized care. By examining the existing literature, research gaps, and future directions, this article aims to guide further advancements in the field of pain management. An online database search was conducted via multiple websites to identify the relevant articles. The inclusion criteria were English articles published between January 2014 and January 2024). Articles that were available as full text clinical trials, observational studies, review articles, systemic reviews, and meta-analyses were included in this review. The exclusion criteria were articles that were not in the English language, not available as free full text, those involving pediatric patients, case reports, and editorials. A total of (47) articles were included in this review. In conclusion, the application of AI in pain management could present promising solutions for pain assessment. AI can potentially increase the accuracy, precision, and efficiency of objective pain assessment.
Collapse
Affiliation(s)
- Salah N El-Tallawy
- Anesthesia and Pain Department, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
- Anesthesia and Pain Department, Faculty of Medicine, Minia University & NCI, Cairo University, Giza, Egypt.
| | | | - Ingrid Vasiliu-Feltes
- Science, Entrepreneurship and Investments Institute, University of Miami, Miami, USA
| | - Rania S Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
7
|
Wider W, Mutang JA, Chua BS, Pang NTP, Jiang L, Fauzi MA, Udang LN. Mapping the evolution of neurofeedback research: a bibliometric analysis of trends and future directions. Front Hum Neurosci 2024; 18:1339444. [PMID: 38799297 PMCID: PMC11116792 DOI: 10.3389/fnhum.2024.1339444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction This study conducts a bibliometric analysis on neurofeedback research to assess its current state and potential future developments. Methods It examined 3,626 journal articles from the Web of Science (WoS) using co-citation and co-word methods. Results The co-citation analysis identified three major clusters: "Real-Time fMRI Neurofeedback and Self-Regulation of Brain Activity," "EEG Neurofeedback and Cognitive Performance Enhancement," and "Treatment of ADHD Using Neurofeedback." The co-word analysis highlighted four key clusters: "Neurofeedback in Mental Health Research," "Brain-Computer Interfaces for Stroke Rehabilitation," "Neurofeedback for ADHD in Youth," and "Neural Mechanisms of Emotion and Self-Regulation with Advanced Neuroimaging. Discussion This in-depth bibliometric study significantly enhances our understanding of the dynamic field of neurofeedback, indicating its potential in treating ADHD and improving performance. It offers non-invasive, ethical alternatives to conventional psychopharmacology and aligns with the trend toward personalized medicine, suggesting specialized solutions for mental health and rehabilitation as a growing focus in medical practice.
Collapse
Affiliation(s)
- Walton Wider
- Faculty of Business and Communications, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Jasmine Adela Mutang
- Faculty of Psychology and Education, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Bee Seok Chua
- Faculty of Psychology and Education, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas Tze Ping Pang
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Leilei Jiang
- Faculty of Education and Liberal Arts, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Ashraf Fauzi
- Faculty of Industrial Management, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia
| | - Lester Naces Udang
- Faculty of Liberal Arts, Shinawatra University, Pathumthani, Thailand
- College of Education, University of the Philippines, Diliman, Philippines
| |
Collapse
|
8
|
Arulkumaran K, Di Vincenzo M, Dossa RFJ, Akiyama S, Ogawa Lillrank D, Sato M, Tomeoka K, Sasai S. A comparison of visual and auditory EEG interfaces for robot multi-stage task control. Front Robot AI 2024; 11:1329270. [PMID: 38783889 PMCID: PMC11111866 DOI: 10.3389/frobt.2024.1329270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Shared autonomy holds promise for assistive robotics, whereby physically-impaired people can direct robots to perform various tasks for them. However, a robot that is capable of many tasks also introduces many choices for the user, such as which object or location should be the target of interaction. In the context of non-invasive brain-computer interfaces for shared autonomy-most commonly electroencephalography-based-the two most common choices are to provide either auditory or visual stimuli to the user-each with their respective pros and cons. Using the oddball paradigm, we designed comparable auditory and visual interfaces to speak/display the choices to the user, and had users complete a multi-stage robotic manipulation task involving location and object selection. Users displayed differing competencies-and preferences-for the different interfaces, highlighting the importance of considering modalities outside of vision when constructing human-robot interfaces.
Collapse
|
9
|
Polyakov D, Robinson PA, Muller EJ, Shriki O. Recruiting neural field theory for data augmentation in a motor imagery brain-computer interface. Front Robot AI 2024; 11:1362735. [PMID: 38694882 PMCID: PMC11061403 DOI: 10.3389/frobt.2024.1362735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 05/04/2024] Open
Abstract
We introduce a novel approach to training data augmentation in brain-computer interfaces (BCIs) using neural field theory (NFT) applied to EEG data from motor imagery tasks. BCIs often suffer from limited accuracy due to a limited amount of training data. To address this, we leveraged a corticothalamic NFT model to generate artificial EEG time series as supplemental training data. We employed the BCI competition IV '2a' dataset to evaluate this augmentation technique. For each individual, we fitted the model to common spatial patterns of each motor imagery class, jittered the fitted parameters, and generated time series for data augmentation. Our method led to significant accuracy improvements of over 2% in classifying the "total power" feature, but not in the case of the "Higuchi fractal dimension" feature. This suggests that the fit NFT model may more favorably represent one feature than the other. These findings pave the way for further exploration of NFT-based data augmentation, highlighting the benefits of biophysically accurate artificial data.
Collapse
Affiliation(s)
- Daniel Polyakov
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Agricultural, Biological, Cognitive Robotics Initiative, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | | | - Eli J. Muller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Agricultural, Biological, Cognitive Robotics Initiative, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
10
|
Yan L, Yu H, Liu Y, Xiang B, Cheng Y, Xu J, Wu Y, Yan F. Brain–Computer Interface Based on Motor Imagery With Visual Guidance and its Application in Control of Simulated Unmanned Aerial Vehicle. IEEE SENSORS JOURNAL 2024; 24:10779-10793. [DOI: 10.1109/jsen.2024.3363754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Affiliation(s)
- Lirong Yan
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Hao Yu
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Yan Liu
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Biao Xiang
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Yu Cheng
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Jihong Xu
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Yibo Wu
- Wuhan Leishen Special Equipment Company Ltd., Wuhan, China
| | - Fuwu Yan
- College of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
11
|
Jia J, Guo J, Yao L, Zhang D. Editorial: Novel technologies targeting the rehabilitation of neurological disorders. Front Neurosci 2024; 18:1367286. [PMID: 38595971 PMCID: PMC11002261 DOI: 10.3389/fnins.2024.1367286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Department of Translational Neuroscience of Shanghai Jing'an District Centre Hospital, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin Yao
- College of Computer Science, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| |
Collapse
|
12
|
张 喆, 陈 衍, 赵 旭, 王 帆, 丁 鹏, 赵 磊, 伏 云. [Ethical considerations for medical applications of implantable brain-computer interfaces]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:177-183. [PMID: 38403619 PMCID: PMC10894729 DOI: 10.7507/1001-5515.202309083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Indexed: 02/27/2024]
Abstract
Implantable brain-computer interfaces (BCIs) have potentially important clinical applications due to the high spatial resolution and signal-to-noise ratio of electrodes that are closer to or implanted in the cerebral cortex. However, the surgery and electrodes of implantable BCIs carry safety risks of brain tissue damage, and their medical applications face ethical challenges, with little literature to date systematically considering ethical norms for the medical applications of implantable BCIs. In order to promote the clinical translation of this type of BCI, we considered the ethics of practice for the medical application of implantable BCIs, including: reducing the risk of brain tissue damage from implantable BCI surgery and electrodes, providing patients with customized and personalized implantable BCI treatments, ensuring multidisciplinary collaboration in the clinical application of implantable BCIs, and the responsible use of implantable BCIs, among others. It is expected that this article will provide thoughts and references for the research and development of ethics of the medical application of implantable BCI.
Collapse
Affiliation(s)
- 喆 张
- 昆明理工大学 马克思主义学院(昆明 650500)Faculty of Marxism, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 衍肖 陈
- 昆明理工大学 马克思主义学院(昆明 650500)Faculty of Marxism, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 旭 赵
- 昆明理工大学 马克思主义学院(昆明 650500)Faculty of Marxism, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 帆 王
- 昆明理工大学 马克思主义学院(昆明 650500)Faculty of Marxism, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 鹏 丁
- 昆明理工大学 马克思主义学院(昆明 650500)Faculty of Marxism, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 磊 赵
- 昆明理工大学 马克思主义学院(昆明 650500)Faculty of Marxism, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 云发 伏
- 昆明理工大学 马克思主义学院(昆明 650500)Faculty of Marxism, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
13
|
Deng H, Li M, Zuo H, Zhou H, Qi E, Wu X, Xu G. Personalized motor imagery prediction model based on individual difference of ERP. J Neural Eng 2024; 21:016027. [PMID: 38359457 DOI: 10.1088/1741-2552/ad29d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Objective. Motor imagery-based brain-computer interaction (MI-BCI) is a novel method of achieving human and external environment interaction that can assist individuals with motor disorders to rehabilitate. However, individual differences limit the utility of the MI-BCI. In this study, a personalized MI prediction model based on the individual difference of event-related potential (ERP) is proposed to solve the MI individual difference.Approach.A novel paradigm named action observation-based multi-delayed matching posture task evokes ERP during a delayed matching posture task phase by retrieving picture stimuli and videos, and generates MI electroencephalogram through action observation and autonomous imagery in an action observation-based motor imagery phase. Based on the correlation between the ERP and MI, a logistic regression-based personalized MI prediction model is built to predict each individual's suitable MI action. 32 subjects conducted the MI task with or without the help of the prediction model to select the MI action. Then classification accuracy of the MI task is used to evaluate the proposed model and three traditional MI methods.Main results.The personalized MI prediction model successfully predicts suitable action among 3 sets of daily actions. Under suitable MI action, the individual's ERP amplitude and event-related desynchronization (ERD) intensity are the largest, which helps to improve the accuracy by 14.25%.Significance.The personalized MI prediction model that uses the temporal ERP features to predict the classification accuracy of MI is feasible for improving the individual's MI-BCI performance, providing a new personalized solution for the individual difference and practical BCI application.
Collapse
Affiliation(s)
- Haodong Deng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Mengfan Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Haoxin Zuo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Huihui Zhou
- Peng Cheng Laboratory, 518000 Shenzhen, People's Republic of China
| | - Enming Qi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Xue Wu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, 300132 Tianjin, People's Republic of China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300132 Tianjin, People's Republic of China
- Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, 300132 Tianjin, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, 300132 Tianjin, People's Republic of China
| |
Collapse
|
14
|
Barnova K, Mikolasova M, Kahankova RV, Jaros R, Kawala-Sterniuk A, Snasel V, Mirjalili S, Pelc M, Martinek R. Implementation of artificial intelligence and machine learning-based methods in brain-computer interaction. Comput Biol Med 2023; 163:107135. [PMID: 37329623 DOI: 10.1016/j.compbiomed.2023.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
Brain-computer interfaces are used for direct two-way communication between the human brain and the computer. Brain signals contain valuable information about the mental state and brain activity of the examined subject. However, due to their non-stationarity and susceptibility to various types of interference, their processing, analysis and interpretation are challenging. For these reasons, the research in the field of brain-computer interfaces is focused on the implementation of artificial intelligence, especially in five main areas: calibration, noise suppression, communication, mental condition estimation, and motor imagery. The use of algorithms based on artificial intelligence and machine learning has proven to be very promising in these application domains, especially due to their ability to predict and learn from previous experience. Therefore, their implementation within medical technologies can contribute to more accurate information about the mental state of subjects, alleviate the consequences of serious diseases or improve the quality of life of disabled patients.
Collapse
Affiliation(s)
- Katerina Barnova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czechia.
| | - Martina Mikolasova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czechia.
| | - Radana Vilimkova Kahankova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czechia
| | - Rene Jaros
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czechia.
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Poland.
| | - Vaclav Snasel
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czechia.
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Australia.
| | - Mariusz Pelc
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Poland; School of Computing and Mathematical Sciences, University of Greenwich, London, UK.
| | - Radek Martinek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Czechia; Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Poland.
| |
Collapse
|
15
|
Allen B. Discovering Themes in Deep Brain Stimulation Research Using Explainable Artificial Intelligence. Biomedicines 2023; 11:771. [PMID: 36979750 PMCID: PMC10045890 DOI: 10.3390/biomedicines11030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Deep brain stimulation is a treatment that controls symptoms by changing brain activity. The complexity of how to best treat brain dysfunction with deep brain stimulation has spawned research into artificial intelligence approaches. Machine learning is a subset of artificial intelligence that uses computers to learn patterns in data and has many healthcare applications, such as an aid in diagnosis, personalized medicine, and clinical decision support. Yet, how machine learning models make decisions is often opaque. The spirit of explainable artificial intelligence is to use machine learning models that produce interpretable solutions. Here, we use topic modeling to synthesize recent literature on explainable artificial intelligence approaches to extracting domain knowledge from machine learning models relevant to deep brain stimulation. The results show that patient classification (i.e., diagnostic models, precision medicine) is the most common problem in deep brain stimulation studies that employ explainable artificial intelligence. Other topics concern attempts to optimize stimulation strategies and the importance of explainable methods. Overall, this review supports the potential for artificial intelligence to revolutionize deep brain stimulation by personalizing stimulation protocols and adapting stimulation in real time.
Collapse
Affiliation(s)
- Ben Allen
- Department of Psychology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
16
|
Collazos-Huertas DF, Álvarez-Meza AM, Cárdenas-Peña DA, Castaño-Duque GA, Castellanos-Domínguez CG. Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity. SENSORS (BASEL, SWITZERLAND) 2023; 23:2750. [PMID: 36904950 PMCID: PMC10007181 DOI: 10.3390/s23052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Motor Imagery (MI) refers to imagining the mental representation of motor movements without overt motor activity, enhancing physical action execution and neural plasticity with potential applications in medical and professional fields like rehabilitation and education. Currently, the most promising approach for implementing the MI paradigm is the Brain-Computer Interface (BCI), which uses Electroencephalogram (EEG) sensors to detect brain activity. However, MI-BCI control depends on a synergy between user skills and EEG signal analysis. Thus, decoding brain neural responses recorded by scalp electrodes poses still challenging due to substantial limitations, such as non-stationarity and poor spatial resolution. Also, an estimated third of people need more skills to accurately perform MI tasks, leading to underperforming MI-BCI systems. As a strategy to deal with BCI-Inefficiency, this study identifies subjects with poor motor performance at the early stages of BCI training by assessing and interpreting the neural responses elicited by MI across the evaluated subject set. Using connectivity features extracted from class activation maps, we propose a Convolutional Neural Network-based framework for learning relevant information from high-dimensional dynamical data to distinguish between MI tasks while preserving the post-hoc interpretability of neural responses. Two approaches deal with inter/intra-subject variability of MI EEG data: (a) Extracting functional connectivity from spatiotemporal class activation maps through a novel kernel-based cross-spectral distribution estimator, (b) Clustering the subjects according to their achieved classifier accuracy, aiming to find common and discriminative patterns of motor skills. According to the validation results obtained on a bi-class database, an average accuracy enhancement of 10% is achieved compared to the baseline EEGNet approach, reducing the number of "poor skill" subjects from 40% to 20%. Overall, the proposed method can be used to help explain brain neural responses even in subjects with deficient MI skills, who have neural responses with high variability and poor EEG-BCI performance.
Collapse
Affiliation(s)
| | | | | | - Germán Albeiro Castaño-Duque
- Cultura de la Calidad en la Educación Research Group, Universidad Nacional de Colombia, Manizales 170003, Colombia
| | | |
Collapse
|
17
|
Schnetzer L, McCoy M, Bergmann J, Kunz A, Leis S, Trinka E. Locked-in syndrome revisited. Ther Adv Neurol Disord 2023; 16:17562864231160873. [PMID: 37006459 PMCID: PMC10064471 DOI: 10.1177/17562864231160873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/14/2023] [Indexed: 03/31/2023] Open
Abstract
The locked-in syndrome (LiS) is characterized by quadriplegia with preserved vertical eye and eyelid movements and retained cognitive abilities. Subcategorization, aetiologies and the anatomical foundation of LiS are discussed. The damage of different structures in the pons, mesencephalon and thalamus are attributed to symptoms of classical, complete and incomplete LiS and the locked-in plus syndrome, which is characterized by additional impairments of consciousness, making the clinical distinction to other chronic disorders of consciousness at times difficult. Other differential diagnoses are cognitive motor dissociation (CMD) and akinetic mutism. Treatment options are reviewed and an early, interdisciplinary and aggressive approach, including the provision of psychological support and coping strategies is favoured. The establishment of communication is a main goal of rehabilitation. Finally, the quality of life of LiS patients and ethical implications are considered. While patients with LiS report a high quality of life and well-being, medical professionals and caregivers have largely pessimistic perceptions. The negative view on life with LiS must be overthought and the autonomy and dignity of LiS patients prioritized. Knowledge has to be disseminated, diagnostics accelerated and technical support system development promoted. More well-designed research but also more awareness of the needs of LiS patients and their perception as individual persons is needed to enable a life with LiS that is worth living.
Collapse
Affiliation(s)
| | - Mark McCoy
- Department of Neurology, Neurological Intensive Care and Neurorehabilitation, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Jürgen Bergmann
- Department of Neurology, Neurological Intensive Care and Neurorehabilitation, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Alexander Kunz
- Department of Neurology, Neurological Intensive Care and Neurorehabilitation, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute of Neurorehabilitation and Space Neurology, Salzburg, Austria
| | - Stefan Leis
- Department of Neurology, Neurological Intensive Care and Neurorehabilitation, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Neurological Intensive Care and Neurorehabilitation, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
- MRI Research Unit, Neuroscience Institute, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute of Neurorehabilitation and Space Neurology, Salzburg, Austria
| |
Collapse
|