1
|
Negi B, Negi VS, Rana SK, Bhatt ID, Manasi S, Nautiyal S. Role of traditional ecological knowledge in shaping climate resilient villages in the Himalaya. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124325. [PMID: 39929124 DOI: 10.1016/j.jenvman.2025.124325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Climate change has diverse effects on the mountainous regions, necessitating an inclusive approach that considers local socioeconomic circumstances, traditional knowledge, and scientific and technological advancements to develop effective coping strategies. The absence of thorough knowledge hampers the integrated progress of socio-ecological systems by limiting the implementation of community-based approaches in the Himalayan region. Traditional ecological knowledge (TEK) enables indigenous communities to preserve and manage their natural resources and biodiversity under diverse environmental conditions, which is crucial for achieving specific targets for sustainable development. This study aimed to document the published literature on the TEK of rural indigenous communities in three landscapes of the Indian Himalayan region spanning a wide elevation range of 50-3300 m asl. The findings of this study revealed that indigenous communities in the Himalaya possess significant traditional knowledge on the management of their agriculture, livestock, soil, water and forest resources. Among these five sectors, majority of the TEK based practices are focused on agriculture, soil and forest resource management with less emphasis on livestock and water management. Despite a good documentation on TEK, the Himalayan landscapes are understudied for its potential to contribute in climate change adaptation, resilience and mitigation strategies and their linkages to sustainable development goals (SDGs). After establishing the linkages with existing climate change adaptation options, many TEK practices in agriculture, soil, and natural resource management emerged as triple-win strategies, supporting climate adaptation, resilience, and mitigation of greenhouse gases. Past studies lack a comprehensive exploration of TEK's potential as climate-smart strategies and often fail to integrate scientific validation or modern techniques to enhance their effectiveness. The studies also lack information on the extent of TEK loss, its causes, and implications in the context of a changing climate. Policymakers and researchers must evaluate the effectiveness of TEK practices through scientific validation and integration with modern techniques to fully harness the benefits of triple-win strategies and linkages to SDGs. A holistic assessment of TEK practices is necessary, one that considers their integrated benefits and synergies. This approach will ensure the effective integration of traditional knowledge into climate response strategies and climate smart frameworks.
Collapse
Affiliation(s)
- Bhawna Negi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Vikram S Negi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India; Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, BGR Campus Pauri Garhwal, Uttarakhand, India
| | - Suresh K Rana
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India
| | - S Manasi
- Institute for Social and Economic Change (ISEC), Dr. VKRV Rao Road, Nagarabhavi, Bengaluru, 560072, Karnataka, India
| | - Sunil Nautiyal
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand, India; Institute for Social and Economic Change (ISEC), Dr. VKRV Rao Road, Nagarabhavi, Bengaluru, 560072, Karnataka, India.
| |
Collapse
|
2
|
Prateep Na Talang R, Na Sorn W, Polruang S, Sirivithayapakorn S. Alternative crop residue management practices to mitigate the environmental and economic impacts of open burning of agricultural residues. Sci Rep 2024; 14:14372. [PMID: 38909099 PMCID: PMC11193774 DOI: 10.1038/s41598-024-65389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024] Open
Abstract
Deliberate open burning of crop residues emits greenhouse gases and toxic pollutants into the atmosphere. This study investigates the environmental impacts (global warming potential, GWP) and economic impacts (net cash flow) of nine agricultural residue management schemes, including open burning, fertilizer production, and biochar production for corn residue, rice straw, and sugarcane leaves. The environmental assessment shows that, except the open burning schemes, fossil fuel consumption is the main contributor of the GWP impact. The fertilizer and biochar schemes reduce the GWP impact including black carbon by 1.88-1.96 and 2.46-3.22 times compared to open burning. The biochar schemes have the lowest GWP (- 1833.19 to - 1473.21 kg CO2-eq/ton). The economic assessment outcomes reveal that the biochar schemes have the highest net cash flow (222.72-889.31 US$2022/ton or 1258.15-13409.16 US$2022/ha). The expenditures of open burning are practically zero, while the biochar schemes are the most costly to operate. The most preferable agricultural residue management type is the biochar production, given the lowest GWP impact and the highest net cash flow. To discourage open burning, the government should tailor the government assistance programs to the needs of the farmers and make the financial assistance more accessible.
Collapse
Affiliation(s)
- Rutjaya Prateep Na Talang
- Environmental Engineering Department, Faculty of Engineering, Environmental Modeling Consultant Center, Kasetsart University, Bangkok, 10900, Thailand
| | - Warangluck Na Sorn
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Sucheela Polruang
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Sanya Sirivithayapakorn
- Environmental Engineering Department, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Saharudin DM, Jeswani HK, Azapagic A. Biochar from agricultural wastes: Environmental sustainability, economic viability and the potential as a negative emissions technology in Malaysia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170266. [PMID: 38253094 DOI: 10.1016/j.scitotenv.2024.170266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biochar used for soil amendment is considered a viable negative emissions technology as it can be produced easily from a wide range of biomass feedstocks, while offering numerous potential agricultural benefits. This research is the first to present a comprehensive sustainability assessment of large-scale biochar production and application in Malaysia. The five feedstocks considered comprise the country's most abundant agricultural wastes from palm oil (empty fruit bunches, fibres, palm fronds and shells) and rice (straw) plantations. Combined with process simulation, life cycle assessment and life cycle costing are used to assess the sustainability of biochar production via slow pyrolysis at different temperatures (300-600 °C), considering two functional units: i) production and application of 1 t of biochar; and ii) removal of 1 t of CO2from the atmosphere. The cradle-to-grave system boundary comprises all life cycle stages from biomass acquisition to biochar use for soil amendment. The positive impacts of the latter, such as carbon sequestration, fertiliser avoidance and reduction in soil N2O emissions, are also included. The global warming potential (GWP) is net-negative in all scenarios, ranging from -436 to -2,085 kg CO2 eq./t biochar and -660 to -933 kg CO2 eq./t CO2 removed. Per t of biochar, the systems with shells have the lowest GWP and those with straw the highest, all showing better performance if produced at higher pyrolysis temperatures. However, the temperature trend is opposite for all other 17 impacts considered, with fibres being the best option and fronds the worst for most categories. Per t CO2 removed, fronds have the highest impact in eight categories, including GWP, and shells the lowest in most categories. All impacts are lower for biochar production at higher temperatures. The main hotspot is the pyrolysis process, influencing the majority of impact categories and contributing 66-75 % to the life cycle costs. The costs range from US$116-197/t biochar and US$60-204/t CO2 removed. The least expensive systems per t biochar are those with straws and per t CO2 removed those with shells, while fronds are the worst option economically for both functional units. Utilising all available feedstocks could remove 6-12.4 Mt of CO2 annually, reducing the national emissions from the agricultural sector by up to 54 % and saving US$36.05 M annually on fertilisers imports. These results will be of interest to policy makers in Malaysia and other regions with abundant agricultural wastes.
Collapse
Affiliation(s)
| | - Harish Kumar Jeswani
- Sustainable Industrial Systems, Department of Chemical Engineering, The University of Manchester, UK
| | - Adisa Azapagic
- Sustainable Industrial Systems, Department of Chemical Engineering, The University of Manchester, UK.
| |
Collapse
|
4
|
Xia F, Zhang Z, Zhang Q, Huang H, Zhao X. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168734. [PMID: 38007117 DOI: 10.1016/j.scitotenv.2023.168734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Anthropogenic greenhouse gas (GHG) emissions are a major factor influencing climate change. The application of biochar as a soil amendment may be an effective way to reduce GHG emissions. Life cycle assessment (LCA) is widely used to assess the impact of biochar as a soil amendment on GHG emissions. The methodology is effective in assessing the impacts of the various stages of the biochar life cycle on GHG emissions. However, because of the diversity of biochar types, it is difficult to summarize the regularity of biochar life cycle impacts on GHG emissions. This paper summarizes the pathways of biochar's effect on GHG emissions and in-depth analyzes the mechanism of biochar's influence on GHG emissions from the perspective of biochar properties. Finally, the review comprehensively analyzes the effects of different types of biochar feedstock on GHG emissions at the stages of feedstock pretreatment, preparation, and application of the life cycle. The conclusions are as follows: (1) Biochar affects GHG emissions in three ways: feedstock supply, pyrolysis process, and application process. (2) The impact of biochar on GHG emissions is influenced by a combination of the physicochemical properties of biochar. (3) Biochar has a positive impact (feedstock pretreatment stage and preparation stage) or a negative impact (application stage) on life cycle GHG emissions. (4) The carbon sequestration capacity of biochar varies by feedstock type. The ranking of carbon sequestration capacity is waste wood biochar (WWB) > crop straw biochar (CSB) > livestock manure biochar (LMB) > sewage sludge biochar (SSB).
Collapse
Affiliation(s)
- Fang Xia
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Qian Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaohui Zhao
- Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
5
|
Maqbool Z, Shahbaz Farooq M, Rafiq A, Uzair M, Yousuf M, Ramzan Khan M, Huo S. Unlocking the potential of biochar in the remediation of soils contaminated with heavy metals for sustainable agriculture. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23257. [PMID: 38310926 DOI: 10.1071/fp23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.
Collapse
Affiliation(s)
- Zubaira Maqbool
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Department of Soil Science and Environmental Science, Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Farooq
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; and Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Centre (NARC), Park Road, Islamabad 44000, Pakistan
| | - Anum Rafiq
- Institute Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Uzair
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Muhammad Yousuf
- Pakistan Agriculture Research Council (PARC), G5, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Shuhao Huo
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
6
|
Alkharabsheh HM, Mwadalu R, Mochoge B, Danga B, Raza MA, Seleiman MF, Khan N, Gitari H. Revitalizing the Biochemical Soil Properties of Degraded Coastal Soil Using Prosopis juliflora Biochar. Life (Basel) 2023; 13:2098. [PMID: 37895479 PMCID: PMC10607985 DOI: 10.3390/life13102098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Biochar is an effective soil amendment with capabilities of boosting carbon sequestration and enhancing soil fertility, thus enhancing plant growth and productivity. While numerous studies have documented the positive effects of biochar on improving soil properties, a number of studies have reported conflicting results. Therefore, the current study was conducted to evaluate the impact of Prosopis juliflora biochar (0, 2.5, 5.0, and 7.5 t ha-1) on soil biochemical properties in Coastal Kenya to ascertain biochar's potential for soil fertility improvement. A randomized complete block design was used for setting up the experiment with three replicates, while Casuarina equisetifolia L. was planted as the test crop. Soil sampling for nutrient analysis was conducted quarterly for 12 months to assess nutrient dynamics under different biochar rates in the current study. Compared to soil untreated with Prosopis juliflora biochar, the results showed that there was a significant increase in soil pH by 21% following biochar utilization at the rate of 7.5 t ha-1. Total nitrogen was increased by 32% after the biochar application, whereas the total organic carbon was increased by four folds in comparison to biochar-untreated soil. Available phosphorus was increased by 264% following biochar application in comparison to the control treatment. In addition, the application of biochar resulted in an increment in the soil exchangeable cations (Ca2+, K+, Mg2+) across the assessment periods. Soil cation exchange capacity (CEC), bacteria and fungi were enhanced by 95, 33 and 48%, respectively, following biochar application at 7.5 t ha-1 in comparison to untreated soil. In conclusion, these results strongly suggest improvement of soil biochemical properties following Prosopis juliflora biochar application, thus providing potential for soil fertility improvement in regions such as the one in the study.
Collapse
Affiliation(s)
- Hiba M. Alkharabsheh
- Department of Water Resources and Environmental Management, Faculty of Agricultural Technology, Al Balqa Applied University, Al-Salt 19117, Jordan
| | - Riziki Mwadalu
- Department of Agricultural Science and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, Nairobi P.O. Box 43844-00100, Kenya
- Central Highland Eco-Region Research Programme, Kenya Forestry Research Institute, Nairobi P.O. Box 20412-00200, Kenya
| | - Benson Mochoge
- Department of Agricultural Science and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, Nairobi P.O. Box 43844-00100, Kenya
| | - Benjamin Danga
- Department of Agricultural Science and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, Nairobi P.O. Box 43844-00100, Kenya
| | - Muhammad Ali Raza
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Institute of Soil Fertilizers and Water-Saving Agriculture, Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naeem Khan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Harun Gitari
- Department of Agricultural Science and Technology, School of Agriculture and Environmental Sciences, Kenyatta University, Nairobi P.O. Box 43844-00100, Kenya
| |
Collapse
|
7
|
Szerement J, Kowalski A, Mokrzycki J, Marcińska-Mazur L, Mierzwa-Hersztek M. Restoration of soils contaminated with PAHs by the mixture of zeolite composites mixed with exogenous organic matter and mineral salts. Sci Rep 2023; 13:14227. [PMID: 37648836 PMCID: PMC10469190 DOI: 10.1038/s41598-023-41429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
The major cause of soil degradation (contamination, erosion, compaction) is closely linked to agriculture, i.e., unsustainable agriculture practices, which are reflected in the depletion of the soil organic carbon pool, loss in soil biodiversity, and reduction of C sink capacity in soils. Therefore, the agricultural practice of applying carbon-rich materials into the soil is an attractive solution for climate change mitigation and soil ecosystem sustainability. The paper aimed to evaluate the effectiveness of the addition of organic-mineral mixtures to the mineral salts (NPK), including the exogenous organic matter (lignite) mixed with zeolite-carbon (NaX-C) or zeolite-vermiculite (NaX-Ver) composites in the restoration of soils contaminated with PAHs. The addition of zeolite composites to fertilizer resulted in a significant reduction in soil PAH levels and a corresponding reduction in plant tissue content, without compromising yields, compared to the control and separate application of NPK. A Significant correlation between PAHs and pHH2O, pHKCl, EC and dehydrogenase activity (DhA) was found in soils. The addition of zeolite composites with lignite significantly reduced the content of PAHs in straws, especially following the application of NaX-C. However, in the case of grains, the highest percentage reduction in comparison to NPK was observed for the highest dose of NaX-Ver.
Collapse
Affiliation(s)
- Justyna Szerement
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Sklodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
| | - Adam Kowalski
- Department of Environmental Analysis, Geological Mapping and Economic Geology, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
| | - Jakub Mokrzycki
- Department of Coal Chemistry and Environmental Sciences, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
| | - Lidia Marcińska-Mazur
- Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
| | - Monika Mierzwa-Hersztek
- Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Kraków, Poland
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21 Av., 31-120, Kraków, Poland
| |
Collapse
|
8
|
Shrestha RK, Jacinthe PA, Lal R, Lorenz K, Singh MP, Demyan SM, Ren W, Lindsey LE. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:769-798. [PMID: 36905388 DOI: 10.1002/jeq2.20475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/28/2023] [Indexed: 05/06/2023]
Abstract
Biochar is one of the few nature-based technologies with potential to help achieve net-zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co-benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field-based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2 O) by 18% and methane (CH4 ) by 3% but increased carbon dioxide (CO2 ) by 1.9%. When biochar was combined with N-fertilizer, it reduced CO2 , CH4 , and N2 O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long-term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.
Collapse
Affiliation(s)
- Raj K Shrestha
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | - Pierre-Andre Jacinthe
- Department of Earth Sciences, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Klaus Lorenz
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, Ohio, USA
| | - Maninder P Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Scott M Demyan
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Wei Ren
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Laura E Lindsey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Sachdeva S, Kumar R, Sahoo PK, Nadda AK. Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120937. [PMID: 36608723 DOI: 10.1016/j.envpol.2022.120937] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Over the last several decades, extensive and inefficient use of contemporary technologies has resulted in substantial environmental pollution, predominantly caused by potentially hazardous elements (PTEs), like heavy metals that severely harm living species. To combat the presence of heavy metals (HMs) in the agrarian system, biochar becomes an attractive approach for stabilizing and limiting availability of HMs in soils due to its high surface area, porosity, pH, aromatic structure as well as several functional groups, which mostly rely on the feedstock and pyrolysis temperature. Additionally, agricultural waste-derived biochar is an effective management option to ensure carbon neutrality and circular economy while also addressing social and environmental concerns. Given these diverse parameters, the present systematic evaluation seeks to (i) ascertain the effectiveness of heavy metal immobilization by agro waste-derived biochar; (ii) examine the presence of biochar on soil physico-chemical, and thermal properties, along with microbial diversity; (iii) explore the underlying mechanisms responsible for the reduction in heavy metal concentration; and (iv) possibility of biochar implications to advance circular economy approach. The collection of more than 200 papers catalogues the immobilization efficiency of biochar in agricultural soil and its impacts on soil from multi-angle perspectives. The data gathered suggests that pristine biochar effectively reduced cationic heavy metals (Pb, Cd, Cu, Ni) and Cr mobilization and uptake by plants, whereas modified biochar effectively reduced As in soil and plant systems. However, the exact mechanism underlying is a complex biochar-soil interaction. In addition to successfully immobilizing heavy metals in the soil, the application of biochar improved soil fertility and increased agricultural productivity. However, the lack of knowledge on unfavorable impacts on the agricultural systems, along with discrepancies between the use of biochar and experimental conditions, impeded a thorough understanding on a deeper level.
Collapse
Affiliation(s)
- Saloni Sachdeva
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10 Sector 62, Noida, 201309, Uttar Pradesh, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda, 151401, Punjab, India; Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| |
Collapse
|
10
|
Grandsir C, Falagán N, Alamar MC. Application of novel technologies to reach net‐zero greenhouse gas emissions in the fresh pasteurised milk supply chain: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Natalia Falagán
- Plant Science Laboratory Cranfield University Cranfield MK43 0AL UK
| | - M. Carmen Alamar
- Plant Science Laboratory Cranfield University Cranfield MK43 0AL UK
| |
Collapse
|
11
|
Xu Q, Song X, Xu M, Xu Q, Liu Q, Tang C, Wang X, Yin W, Wang X. Elevated CO 2 and biochar differentially affect plant C:N:P stoichiometry and soil microbiota in the rhizosphere of white lupin (Lupinus albus L.). CHEMOSPHERE 2022; 308:136347. [PMID: 36087720 DOI: 10.1016/j.chemosphere.2022.136347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Biochar application is a potent climate change mitigation strategy in agroecosystems. However, little is known about the interactive effects of elevated CO2 (eCO2) and biochar on plant nutrient uptake and soil microbial processes. A pot experiment was conducted to investigate the effects of eCO2 and biochar addition on plant C:N:P stoichiometry and rhizobacterial community for better management of nutrient balance and use efficiency in a future climate scenario. White lupin (Lupinus albus L.) was grown for 30 days in topsoil and subsoil with or without 2% corn-stubble biochar under ambient CO2 (aCO2: 390 ppm) or eCO2 (550 ppm). Elevated CO2 increased, but biochar decreased, plant biomass and shoot N and P uptake, with no interactions in either soil layer. Elevated CO2 decreased shoot N concentration by 16% and biochar decreased shoot P concentration by 11%. As a result, eCO2 increased shoot C:N ratio by 20% and decreased the N:P ratio by 11%. Biochar decreased shoot C:N ratio by 8% in the subsoil under eCO2. However, biochar increased shoot C:P ratio by an average of 13% and N:P ratio by 23% in the subsoil. Moreover, plants grown in the subsoil showed lower shoot N (35%) and P (70%) uptake compared to the topsoil. The results indicate that N and P are the more limiting factors that regulate plant growth under eCO2 and biochar application, respectively. Elevated CO2 and biochar oppositely affected dominant rhizobacterial community composition, with the eCO2 effect being greater. The microbiota in the subsoil held a greater diversity of contrasting species than the topsoil, which were associated with nutrient cycling, hydrocarbon degradation and plant productivity. These results enrich our understanding of potential soil nutrient cycling and plant nutrient balance in future agroecosystems.
Collapse
Affiliation(s)
- Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xian Song
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qiuyue Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qi Liu
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xiaoli Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China.
| |
Collapse
|
12
|
Hagenbo A, Antón-Fernández C, Bright RM, Rasse D, Astrup R. Climate change mitigation potential of biochar from forestry residues under boreal condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151044. [PMID: 34673068 DOI: 10.1016/j.scitotenv.2021.151044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Forest harvest residue is a low-competitive biomass feedstock that is usually left to decay on site after forestry operations. Its removal and pyrolytic conversion to biochar is seen as an opportunity to reduce terrestrial CO2 emissions and mitigate climate change. The mitigation effect of biochar is, however, ultimately dependent on the availability of the biomass feedstock, thus CO2 removal of biochar needs to be assessed in relation to the capacity to supply biochar systems with biomass feedstocks over prolonged time scales, relevant for climate mitigation. In the present study we used an assembly of empirical models to forecast the effects of harvest residue removal on soil C storage and the technical capacity of biochar to mitigate national-scale emissions over the century, using Norway as a case study for boreal conditions. We estimate the mitigation potential to vary between 0.41 and 0.78 Tg CO2 equivalents yr-1, of which 79% could be attributed to increased soil C stock, and 21% to the coproduction of bioenergy. These values correspond to 9-17% of the emissions of the Norwegian agricultural sector and to 0.8-1.5% of the total national emission. This illustrates that deployment of biochar from forest harvest residues in countries with a large forestry sector, relative to economy and population size, is likely to have a relatively small contribution to national emission reduction targets but may have a large effect on agricultural emission and commitments. Strategies for biochar deployment need to consider that biochar's mitigation effect is limited by the feedstock supply which needs to be critically assessed.
Collapse
Affiliation(s)
- Andreas Hagenbo
- Norwegian Institute of Bioeconomy Research (NIBIO), Postboks 115, 1431 Ås, Norway.
| | | | - Ryan M Bright
- Norwegian Institute of Bioeconomy Research (NIBIO), Postboks 115, 1431 Ås, Norway
| | - Daniel Rasse
- Norwegian Institute of Bioeconomy Research (NIBIO), Postboks 115, 1431 Ås, Norway
| | - Rasmus Astrup
- Norwegian Institute of Bioeconomy Research (NIBIO), Postboks 115, 1431 Ås, Norway
| |
Collapse
|
13
|
Lim TC, Cuellar A, Langseth K, Waldon JL. Technoeconomic Analysis of Negative Emissions Bioenergy with Carbon Capture and Storage through Pyrolysis and Bioenergy District Heating Infrastructure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1875-1884. [PMID: 35015535 DOI: 10.1021/acs.est.1c03478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioenergy with carbon capture and storage (BECCS) has been identified as a cost-effective negative emission technology that will be necessary to limit global warming to 1.5 °C targets. However, the study of BECCS deployment has mainly focused on large-scale, centralized facilities and geologic sequestration. In this study, we perform technoeconomic analysis of BECCS through pyrolysis technology within a district heating system using locally grown switchgrass. The analysis is based on a unique case study of an existing switchgrass-fueled district heating system in the rural southeastern United States and combines empirical daily energy data with a retrospective analysis of add-on pyrolysis technology with biochar storage. We show that at current heating oil and switchgrass prices, pyrolysis-bioenergy (PyBE) and pyrolysis BECCS (PyBECCS) can each reach economic parity with a fossil fuel-based system when the prices of carbon is $116/Mg CO2-eq and $51/Mg CO2-eq, respectively. In addition, each can reach parity with a direct combustion bioenergy (BE) system when the prices of carbon is $264/Mg CO2-eq and $212/Mg CO2-eq, respectively. However, PyBECCS cannot reach economic parity with BE without revenue from carbon sequestration, while PyBE can, and in some cases, PyBECCS could counterintuitively require more reliance on fossil fuels than both the PyBE case and BE.
Collapse
Affiliation(s)
- Theodore Chao Lim
- School of Public and International Affairs, Virginia Tech. 140 Otey St NW, Blacksburg, Virginia 24061, United States
| | - Amanda Cuellar
- School of Public and International Affairs, Virginia Tech. 140 Otey St NW, Blacksburg, Virginia 24061, United States
- B&D Engineering and Consulting LLC, 12100 Richmond Rd, Glencoe, Oklahoma 74032, United States
| | - Kyle Langseth
- Langseth Engineering, 3860 Peakland Place, Lynchburg, Virginia 24503, United States
| | - Jefferson L Waldon
- Restoration Bioproducts LLC, P.O. Box 20012, Roanoke, Virginia 24018, United States
| |
Collapse
|
14
|
Asibor JO, Clough PT, Nabavi SA, Manovic V. Assessment of optimal conditions for the performance of greenhouse gas removal methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113039. [PMID: 34153633 DOI: 10.1016/j.jenvman.2021.113039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, a comparative literature-based assessment of the impact of operational factors such as climatic condition, vegetation type, availability of land, water, energy and biomass, management practices, cost and soil characteristics was carried out on six greenhouse gas removal (GGR) methods. These methods which include forestation, enhanced weathering (EW), soil carbon sequestration (SCS), biochar, direct air capture with carbon storage (DACCS) and bioenergy with carbon capture and storage (BECCS) were accessed with the aim of identifying the conditions and requirements necessary for their optimum performance. The extent of influence of these factors on the performance of the various GGR methods was discussed and quantified on a scale of 0-5. The key conditions necessary for optimum performance were identified with forestation, EW, SCS and biochar found to be best deployed within the tropical and temperate climatic zones. The CCS technologies (BECCS and DACCS) which have been largely projected as major contributors to the attainment of the emission mitigation targets were found to have a larger locational flexibility. However, the need for cost optimal siting of the CCS plant is necessary and dependent on the presence of appropriate storage facilities, preferably geological. The need for global and regional cooperation as well as some current efforts at accelerating the development and deployment of these GGR methods were also highlighted.
Collapse
Affiliation(s)
- Jude O Asibor
- Energy and Power Theme, School of Water, Energy and Environment, Cranfield University, Bedford, Bedfordshire, MK43 0AL, UK
| | - Peter T Clough
- Energy and Power Theme, School of Water, Energy and Environment, Cranfield University, Bedford, Bedfordshire, MK43 0AL, UK.
| | - Seyed Ali Nabavi
- Energy and Power Theme, School of Water, Energy and Environment, Cranfield University, Bedford, Bedfordshire, MK43 0AL, UK
| | - Vasilije Manovic
- Energy and Power Theme, School of Water, Energy and Environment, Cranfield University, Bedford, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
15
|
Assessing the Carbon Footprint of Biochar from Willow Grown on Marginal Lands in Finland. SUSTAINABILITY 2021. [DOI: 10.3390/su131810097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Willow biochar can help to sequestrate carbon. However, biomasses should not be grown on arable lands, as it would increase competition with food production and lead to sustainability issues such as increased food prices and decreased food security. The purpose of this study is to calculate the carbon footprint (CF) of willow biochar in Finland and assess the greenhouse gas compensation potential of marginal lands if they are utilized for willow biochar production. The CF of willow biochar is inadequately assessed together with marginal lands in the literature. A cradle-to-grave Life Cycle Assessment (LCA) of willow biochar was conducted. The results were then applied to assess the total CF of marginal lands. It was found that the CF of willow biochar is −1875 kgCO2eq t−1 of dry biochar. Grown on marginal lands in Finland, willow biochar could compensate 7.7% of yearly agricultural greenhouse gas emissions. On buffer zones, willow biochar could also compensate some of the emissions depending on the zone size. The results of the study support current findings of biochar as a carbon negative product. The study also indicates that willow biochar produced in marginal lands can be used to compensate agricultural greenhouse gas emissions to some extent.
Collapse
|
16
|
Papageorgiou A, Azzi ES, Enell A, Sundberg C. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145953. [PMID: 33636507 DOI: 10.1016/j.scitotenv.2021.145953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
The use of biochar to stabilize soil contaminants is emerging as a technique for remediation of contaminated soils. In this study, an environmental assessment of systems where biochar produced from wood waste with energy recovery is used for remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAH) and metal(loid)s was performed. Two soil remediation options with biochar (on- and off-site) are considered and compared to landfilling. The assessment combined material and energy flow analysis (MEFA), life cycle assessment (LCA), and substance flow analysis (SFA). The MEFA indicated that on-site remediation can save fuel and backfill material compared to off-site remediation and landfilling. However, the net energy production by pyrolysis of wood waste for biochar production is 38% lower than incineration. The LCA showed that both on-site and off-site remediation with biochar performed better than landfilling in 10 of the 12 environmental impact categories, with on-site remediation performing best. Remediation with biochar provided substantial reductions in climate change impact in the studied context, owing to biochar carbon sequestration being up to 4.5 times larger than direct greenhouse gas emissions from the systems. The two biochar systems showed increased impacts only in ionizing radiation and fossils because of increased electricity consumption for biochar production. They also resulted in increased biomass demand to maintain energy production. The SFA indicated that leaching of PAH from the remediated soil was lower than from landfilled soil. For metal(loid)s, no straightforward conclusion could be made, as biochar had different effects on their leaching and for some elements the results were sensitive to water infiltration assumptions. Hence, the reuse of biocharremediated soils requires further evaluation, with site-specific information. Overall, in Sweden's current context, the biochar remediation technique is an environmentally promising alternative to landfilling worth investigating further.
Collapse
Affiliation(s)
- Asterios Papageorgiou
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden.
| | - Elias S Azzi
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Anja Enell
- Swedish Geotechnical Institute (SGI), SE-581 93 Linköping, Sweden
| | - Cecilia Sundberg
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden; Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
17
|
Simmons AT, Cowie AL, Waters CM. Pyrolysis of invasive woody vegetation for energy and biochar has climate change mitigation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145278. [PMID: 33736413 DOI: 10.1016/j.scitotenv.2021.145278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Woody plant encroachment in agricultural areas reduces agricultural production and is a recognised land degradation problem of global significance. Invasive native scrub (INS) is woody vegetation that invades southern Australian rangelands and is commonly cleared to return land to agricultural production. Clearing of INS emits carbon to the atmosphere, and the retention of INS by landholders for the purpose of avoiding carbon emissions has been incentivized in Australia as an emission reduction strategy. Retaining INS, however, means land remains relatively unproductive because INS negatively impacts livestock production. This desktop study examined whether clearing INS to return an area to production, and pyrolysing residues to produce biochar, has the potential to provide climate change mitigation (the "pyrolysis scenario"). The syngas produced via pyrolysis was assumed to be used to generate electricity that was fed into the electricity grid and avoided the production of electricity from existing sources. In addition, the biochar was assumed to be applied to soils used for wheat production, giving mitigation benefits from reduced N2O emissions from fertiliser use and reduction in the use of lime to ameliorate soil acidity. Relative to clearing INS and burning residues in-situ, the pyrolysis scenario resulted in a reduction in radiative forcing of 1.28 × 10-4 W m2 ha-1 of INS managed, 25 years after clearing, and was greater than the reduction of 1.06 × 10-4 W m2 ha-1 that occurred when INS was retained. The greatest contribution to the climate change mitigation provided by the pyrolysis scenario came from avoided emissions from grid electricity production, while avoided N2O and lime emissions made a relatively minor contribution towards mitigation.
Collapse
Affiliation(s)
- Aaron T Simmons
- New South Wales Department of Primary Industries, 98 Victoria St, Taree, NSW, 2430, Australia.
| | - Annette L Cowie
- New South Wales Department of Primary Industries, Livestock Industry Centre, Trevenna Rd, Armidale, NSW, 2351, Australia; School of Environmental and Rural Science, University of New England, Armidale, NSW, 2531, Australia
| | - Cathy M Waters
- New South Wales Department of Primary Industries, 4 Hampden Street, Dubbo, NSW, 2830, Australia
| |
Collapse
|
18
|
Owsianiak M, Lindhjem H, Cornelissen G, Hale SE, Sørmo E, Sparrevik M. Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142455. [PMID: 33049526 DOI: 10.1016/j.scitotenv.2020.142455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The feasibility of using biowaste for the production of biochar and its use in agriculture depends on its environmental and economic performance. This paper quantifies environmental and economic life cycle impacts of biochar production and agricultural use in six developing and middle-income countries (Ethiopia, Indonesia, Kenya, Peru, Vietnam, and China). Two types of production technologies typical for rural and urban areas were investigated (flame curtain kiln and gasifier, respectively), and comparisons were made with composting (either home composting or windrow composting) as alternative biowaste management systems. The results showed that both pyrolysis systems performed better than composting and both were expected to bring environmental benefits. The largest environmental benefits were observed for the gasifier systems, mainly due to the substitution of electricity production from the grid. Damage to ecosystems and human health ranged from -1 × 10-7 to -2 × 10-8 species×yr and from -1 × 10-5 to -5 × 10-6 DALY per kg of biowaste treated, respectively (negative scores indicating environmental benefits). However, net economic benefits were only achieved when low-cost simple kilns were used in countries with low labor cost, like Ethiopia, Kenya and Vietnam (net profit from 0.01 to 0.08 USD per kg of biowaste treated). Further, high investment and operating costs and relatively small electricity revenue from substituting the grid electricity resulted in gasifier scenarios being economically unsustainable (net loss from 0.29 to 1.58 USD per kg of biowaste treated). Thus, there are trade-offs between positive environmental impacts for society and net market loss for the individual decision-maker (company or individual farmer) that should be considered when making decisions regarding the implementation of biochar technology in developing and middle-income countries. The use of simple kilns in countries with relatively low labor costs appears to be favorable.
Collapse
Affiliation(s)
- Mikołaj Owsianiak
- Division for Sustainability, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet, Building 424, DK-2800 Kgs. Lyngby, Denmark.
| | - Henrik Lindhjem
- Menon Centre for Environmental and Resource Economics, Oslo, Norway; Norwegian Institute for Nature Research (NINA), Oslo, Norway
| | - Gerard Cornelissen
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Environmental Sciences and Natural Resources (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sarah E Hale
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway
| | - Erlend Sørmo
- Geotechnics and Environment, Norwegian Geotechnical Institute (NGI), Oslo, Norway
| | - Magnus Sparrevik
- Department of Industrial Economics and Technology Management (IØT), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
19
|
Evaluation of Joint Management of Pine Wood Waste and Residual Microalgae for Agricultural Application. SUSTAINABILITY 2020. [DOI: 10.3390/su13010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work addresses the joint management of residual microalgae and pine wood waste through pyrolysis to obtain a solid product for its use as soil amendment and two other by-products (liquid and gaseous) that can be used for energy purposes. Two management routes have been followed. The first route is through the co-pyrolysis of mixtures of both residual materials in several proportions and the later use of their solid fraction for soil amendment. The second route is the pyrolysis of pine wood waste and its direct combination with dried residual microalgae, also using it as soil amendment. The solid fraction assessment shows that from seven solid products (biochar) three stand out for their positive applicability in agriculture as soil amendment. In addition, they also present the benefit of serving as carbon sink, giving a negative balance of CO2 emissions. However, caution is suggested due to biochar applicability being subject to soil characteristics. To ensure the sustainability of the overall process, the energy available in liquid and gaseous fractions has been assessed for covering the drying needs of the residual microalgae in both cases. These results suggest that the pyrolysis process is a sustainable way to manage specific evaluated residues and their products.
Collapse
|
20
|
Towards Indicators for a Negative Emissions Climate Stabilisation Index: Problems and Prospects. CLIMATE 2020. [DOI: 10.3390/cli8060075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The incongruence between the United Nations objective to hold global warming well below 2 °C and the rate of global emission reductions has intensified interest in negative emissions. Previous research has explored several pros and cons of individual negative emissions technologies. Systematised approaches to comparing and prioritising among them are, however, largely lacking. In response to this gap in the literature, this article reviews the scientific literature on indicators for designing negative emissions climate stabilisation value indexes. An index typically provides summary measures of several components, often denoted indicators. Utilizing a narrative review methodology, the article derives five categories of indicators underpinned by overlapping and often mutually reinforcing environmental and socio-economic values. A list of 21 indicators are proposed to capture both positive and negative values associated with effectiveness, efficiency, scale, risk, and synergies. While discussing indicators capable of providing guidance on negative emissions is timely, given the emerging shift away from pure emission reduction targets towards net-zero targets, numerous complexities are involved in determining their relative values. The results herein serve to inform policy making on the prioritisation and incentivisation of negative emissions technologies capable of delivering on the new objectives, and the results highlight the many risks and uncertainties involved in such exercises. The article concludes that systematic research on the comparison of NETs is incomplete. An iterative, interdisciplinary research programme exploring such questions has the potential to be extremely rewarding.
Collapse
|