1
|
Alessia C, Federica DA, Claudia P, Barbara C, Laura Z, Silvano O. A preliminary survey of the cellular responses of the black fungus Cryomyces antarcticus to long and short-term dehydration. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13309. [PMID: 39075848 PMCID: PMC11286975 DOI: 10.1111/1758-2229.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/08/2024] [Indexed: 07/31/2024]
Abstract
The McMurdo Dry Valleys in Southern Victoria Land, Antarctica, are known for their extreme aridity, cold, and nutrient-poor conditions. These valleys provide a valuable comparison to environments on Mars. The survival of microorganisms in these areas hinges on their ability to withstand dehydration due to the limited availability of liquid water. Some microorganisms have adapted to survive extended periods of metabolic inactivity and dehydration, a physiological response to the harsh conditions in which they exist. This adaptation is significant for astrobiology studies as it allows for testing the resilience of microorganisms under extraterrestrial conditions, exploring the boundaries and potential for life beyond Earth. In this study, we examined the survivability, metabolic activity, cellular membrane integrity, and ultrastructural damage of Cryomyces antarcticus, a eukaryotic organism used for astrobiological studies, following two dehydration processes. We conducted a fast dehydration process, simulating what happens on the surface of Antarctic rocks under typical environmental conditions, and a slow dehydration process, which is commonly used in astrobiological experiments. Our findings revealed a higher percentage of damaged cells following slow dehydration treatments, confirming that rapid dehydration reflects the adaptability of microorganisms to respond to sudden and drastic changes in the Antarctic environment.
Collapse
Affiliation(s)
- Cassaro Alessia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - D' Alò Federica
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Research on Terrestrial EcosystemsNational Research CouncilPorano (TR)Italy
| | - Pacelli Claudia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Human Spaceflight and Scientific Research UnitItalian Space AgencyRomeItaly
| | - Cavalazzi Barbara
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- LE STUDIUM Institute for Advanced StudiesOrléansFrance
| | - Zucconi Laura
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Polar SciencesNational Research Council of Italy (CNR‐ISP)MessinaItaly
| | - Onofri Silvano
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| |
Collapse
|
2
|
Cassaro A, Pacelli C, Baqué M, Maturilli A, Böttger U, Fujimori A, Moeller R, de Vera JPP, Onofri S. Spectroscopic investigations of fungal biomarkers after exposure to heavy ion irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123073. [PMID: 37453382 DOI: 10.1016/j.saa.2023.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
The main objective of the ongoing and future space exploration missions is the search for traces of extant or extinct life (biomarkers) on Mars. One of the main limiting factors on the survival of Earth-like life is the presence of harmful space radiation, that could damage or modify also biomolecules, therefore understanding the effects of radiation on terrestrial biomolecules stability and detectability is of utmost importance. Which terrestrial molecules could be preserved in a Martian radiation scenario? Here, we investigated the potential endurance of fungal biomolecules, by exposing de-hydrated colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus mixed with Antarctic sandstone and with two Martian regolith analogues to increasing doses (0, 250 and 1000 Gy) of accelerated ions, namely iron (Fe), argon (Ar) and helium (He) ions. We analyzed the feasibility to detect fungal compounds with Raman and Infrared spectroscopies after exposure to these space-relevant radiations.
Collapse
Affiliation(s)
- A Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - C Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy; Italian Space Agency, Via del Politecnico snc, Rome, Italy.
| | - M Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - A Maturilli
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department Berlin, Germany
| | - U Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems Berlin, Germany
| | - A Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba, Japan
| | - R Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, DLR, Linder Höhe, D-51147 Köln, Germany; University of Applied Sciences Bonn-Rhein-Sieg (BRSU), Natural Sciences, von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - J-P P de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, MUSC, Linder Höhe, D-51147 Köln, Germany; University of Potsdam, Institute for Biochemistry and Biology, WG Biodiversity/ Systematic Botany, Maulbeerallee 1, 14469 Potsdam, Germany
| | - S Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
4
|
Terranova ML. Prominent Roles and Conflicted Attitudes of Eumelanin in the Living World. Int J Mol Sci 2023; 24:ijms24097783. [PMID: 37175490 PMCID: PMC10178024 DOI: 10.3390/ijms24097783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Eumelanin, a macromolecule widespread in all the living world and long appreciated for its protective action against harmful UV radiation, is considered the beneficial component of the melanin family (ευ means good in ancient Greek). This initially limited picture has been rather recently extended and now includes a variety of key functions performed by eumelanin in order to support life also under extreme conditions. A lot of still unexplained aspects characterize this molecule that, in an evolutionary context, survived natural selection. This paper aims to emphasize the unique characteristics and the consequent unusual behaviors of a molecule that still holds the main chemical/physical features detected in fossils dating to the late Carboniferous. In this context, attention is drawn to the duality of roles played by eumelanin, which occasionally reverses its functional processes, switching from an anti-oxidant to a pro-oxidant behavior and implementing therefore harmful effects.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
5
|
Cassaro A, Pacelli C, Baqué M, Cavalazzi B, Gasparotto G, Saladino R, Botta L, Böttger U, Rabbow E, de Vera JP, Onofri S. Investigation of fungal biomolecules after Low Earth Orbit exposure: a testbed for the next Moon missions. Environ Microbiol 2022; 24:2938-2950. [PMID: 35437941 PMCID: PMC9540993 DOI: 10.1111/1462-2920.15995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
The Moon is characterized by extremely harsh conditions due to ultraviolet irradiation, wide temperature extremes, vacuum resulting from the absence of an atmosphere and high ionizing radiation. Therefore, its surface may provide a unique platform to investigate the effects of such conditions. For lunar exploration with the Lunar Gateway platform, exposure experiments in Low Earth Orbit are useful testbeds to prepare for lunar space experiments and to understand how and if potential biomarkers are influenced by extra‐terrestrial conditions. During the BIOMEX (BIOlogy and Mars EXperiment) project, dried colonies of the fungus Cryomyces antarcticus grown on Lunar Regolith Analogue (LRA) were exposed to space conditions for 16 months aboard the EXPOSE‐R2 payload outside the International Space Station. In this study, we investigated the stability/degradation of fungal biomarkers in LRA after exposure to (i) simulated space and (ii) real space conditions, using Raman spectroscopy, gas chromatography–mass spectrometry and DNA amplification. The results demonstrated that fungal biomarkers were detectable after 16 months of real space exposure. This work will contribute to the interpretation of data from future biological experiments in the Cislunar orbit with the Lunar Gateway platform and/or on the lunar surface, in preparation for the next step of human exploration.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy.,Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, 00133, Italy
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstraße 2, Berlin, Germany
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy.,Department of Geology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.,Le Studium Loire Valley Institute for Advanced Studies, Rue Dupanloup 1, Orléans, France
| | - Giorgio Gasparotto
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstraße 2, Berlin, Germany
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, Cologne, 51147, Germany
| | - Jean-Pierre de Vera
- Space Operations and Astronaut Training, MUSC, German Aerospace Center (DLR), Linder Höhe, Cologne, 51147, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| |
Collapse
|
6
|
The Ground-Based BIOMEX Experiment Verification Tests for Life Detection on Mars. Life (Basel) 2021; 11:life11111212. [PMID: 34833088 PMCID: PMC8619271 DOI: 10.3390/life11111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
The success of an astrobiological search for life campaign on Mars, or other planetary bodies in the Solar System, relies on the detectability of past or present microbial life traces, namely, biosignatures. Spectroscopic methods require little or no sample preparation, can be repeated almost endlessly, and can be performed in contact or even remotely. Such methods are therefore ideally suited to use for the detection of biosignatures, which can be confirmed with supporting instrumentation. Here, we discuss the use of Raman and Fourier Transform Infrared (FT-IR) spectroscopies for the detection and characterization of biosignatures from colonies of the fungus Cryomyces antarcticus, grown on Martian analogues and exposed to increasing doses of UV irradiation under dried conditions. The results report significant UV-induced DNA damage, but the non-exceeding of thresholds for allowing DNA amplification and detection, while the spectral properties of the fungal melanin remained unaltered, and pigment detection and identification was achieved via complementary analytical techniques. Finally, this work found that fungal cell wall compounds, likely chitin, were not degraded, and were still detectable even after high UV irradiation doses. The implications for the preservation and detection of biosignatures in extraterrestrial environments are discussed.
Collapse
|
7
|
Cheptsov VS, Belov AA, Vorobyova EA, Pavlov AK, Lomasov VN. Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions. Microorganisms 2021; 9:198. [PMID: 33477915 PMCID: PMC7833375 DOI: 10.3390/microorganisms9010198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great influence. However, the influence of factors such as the radiation intensity (in low-temperature conditions) and the type of mineral matrix, in which microorganisms are located, has been practically unstudied. It has been shown that the radioresistance of bacteria can increase after their exposure to sublethal doses and subsequent repair of damage under favorable conditions, however, such studies are also few and the influence of other factors of extraterrestrial space (temperature, pressure) was not studied in them. The viability of bacteria Arthrobacter polychromogenes, Kocuria rosea and Xanthomonas sp. after irradiation with gamma radiation at a dose of 1 kGy under conditions of low pressure (1 Torr) and low temperature (-50 °C) at different radiation intensities (4 vs. 0.8 kGy/h) with immobilization of bacteria on various mineral matrices (montmorillonite vs. analogue of lunar dust) has been studied. Native, previously non-irradiated strains, and strains that were previously irradiated with gamma radiation and subjected to 10 passages of cultivation on solid media were irradiated. The number of survived cells was determined by culturing on a solid medium. It has been shown that the radioresistance of bacteria depends significantly on the type of mineral matrix, on which they are immobilized, wherein montmorillonite contributes to an increased survivability in comparison with a silicate matrix. Survivability of the studied bacteria was found to increase with decreasing radiation intensity, despite the impossibility of active reparation processes under experimental conditions. Considering the low intensity of radiation on various space objects in comparison with radiobiological experiments, this suggests a longer preservation of the viable microorganisms outside the Earth than is commonly believed. An increase in bacterial radioresistance was revealed even after one cycle of irradiation of the strains and their subsequent cultivation under favourable conditions. This indicates the possibility of hypothetical microorganisms on Mars increasing their radioresistance.
Collapse
Affiliation(s)
- Vladimir S. Cheptsov
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str., 84/32, 117997 Moscow, Russia
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Andrey A. Belov
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Elena A. Vorobyova
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1, 12, 119234 Moscow, Russia; (A.A.B.); (E.A.V.)
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Anatoli K. Pavlov
- Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Polytechnicheskaya Street, 26, 194021 Saint-Petersburg, Russia;
| | - Vladimir N. Lomasov
- STC “Nuclear Physics”, Peter the Great St. Petersburg State Polytechnic University, Polytechnicheskaya Street, 29, 195251 Saint-Petersburg, Russia;
| |
Collapse
|
8
|
Aureli L, Pacelli C, Cassaro A, Fujimori A, Moeller R, Onofri S. Iron Ion Particle Radiation Resistance of Dried Colonies of Cryomyces antarcticus Embedded in Martian Regolith Analogues. Life (Basel) 2020; 10:E306. [PMID: 33255166 PMCID: PMC7761078 DOI: 10.3390/life10120306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Abstract
Among the celestial bodies in the Solar System, Mars currently represents the main target for the search for life beyond Earth. However, its surface is constantly exposed to high doses of cosmic rays (CRs) that may pose a threat to any biological system. For this reason, investigations into the limits of resistance of life to space relevant radiation is fundamental to speculate on the chance of finding extraterrestrial organisms on Mars. In the present work, as part of the STARLIFE project, the responses of dried colonies of the black fungus Cryomyces antarcticus Culture Collection of Fungi from Extreme Environments (CCFEE) 515 to the exposure to accelerated iron (LET: 200 keV/μm) ions, which mimic part of CRs spectrum, were investigated. Samples were exposed to the iron ions up to 1000 Gy in the presence of Martian regolith analogues. Our results showed an extraordinary resistance of the fungus in terms of survival, recovery of metabolic activity and DNA integrity. These experiments give new insights into the survival probability of possible terrestrial-like life forms on the present or past Martian surface and shallow subsurface environments.
Collapse
Affiliation(s)
- Lorenzo Aureli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
- Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan;
| | - Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, DLR, Linder Höhe, D-51147 Köln, Germany;
- Natural Sciences Department, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
| |
Collapse
|