1
|
Arrigoni A, Previtali M, Bosticardo S, Pezzetti G, Poloni S, Capelli S, Napolitano A, Remuzzi A, Zangari R, Lorini FL, Sessa M, Daducci A, Caroli A, Gerevini S. Brain microstructure and connectivity in COVID-19 patients with olfactory or cognitive impairment. Neuroimage Clin 2024; 43:103631. [PMID: 38878591 PMCID: PMC11225694 DOI: 10.1016/j.nicl.2024.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION The COVID-19 pandemic has affected millions worldwide, causing mortality and multi-organ morbidity. Neurological complications have been recognized. This study aimed to assess brain structural, microstructural, and connectivity alterations in patients with COVID-19-related olfactory or cognitive impairment using post-acute (time from onset: 264[208-313] days) multi-directional diffusion-weighted MRI (DW-MRI). METHODS The study included 16 COVID-19 patients with cognitive impairment (COVID-CM), 35 COVID-19 patients with olfactory disorder (COVID-OD), and 14 controls. A state-of-the-art processing pipeline was developed for DW-MRI pre-processing, mean diffusivity and fractional anisotropy computation, fiber density and cross-section analysis, and tractography of white-matter bundles. Brain parcellation required for probing network connectivity, region-specific microstructure and volume, and cortical thickness was based on T1-weighted scans and anatomical atlases. RESULTS Compared to controls, COVID-CM patients showed overall gray matter atrophy (age and sex corrected p = 0.004), and both COVID-19 patient groups showed regional atrophy and cortical thinning. Both groups presented an increase in gray matter mean diffusivity (corrected p = 0.001), decrease in white matter fiber density and cross-section (corrected p < 0.05), , and COVID-CM patients also displayed an overall increased diffusivity (p = 0.022) and decreased anisotropy (corrected p = 0.038) in white matter. Graph-based analysis revealed reduced network modularity, with an extensive pattern of connectivity increase, in conjunction with a localized reduction in a few connections, mainly located in the left hemisphere. The left cingulate, anterior cingulate, and insula were primarily involved. CONCLUSION Expanding upon previous findings, this study further investigated significant alterations in brain morphology, microstructure, and connectivity in COVID-19 patients with olfactory or cognitive disfunction. These findings suggest underlying neurodegeneration, neuroinflammation, and concomitant compensatory mechanisms. Future longitudinal studies are required to monitor the alterations over time and assess their transient or permanent nature.
Collapse
Affiliation(s)
- Alberto Arrigoni
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy.
| | - Mattia Previtali
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Sara Bosticardo
- Department of Computer Science, University of Verona, Italy; Translational Imaging in Neurology (ThINK), Department of Biomedical Engineering, Faculty of Medicine, Basel, Switzerland.
| | - Giulio Pezzetti
- Department of Neuroradiology, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Sofia Poloni
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy.
| | - Serena Capelli
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy.
| | - Angela Napolitano
- Department of Neuroradiology, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Andrea Remuzzi
- Department of Management Information and Production Engineering, University of Bergamo, Dalmine, Italy.
| | - Rosalia Zangari
- FROM Research Foundation, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Ferdinando Luca Lorini
- Department of Emergency and Critical Care Area, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Maria Sessa
- Department of Neurology, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | | | - Anna Caroli
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy.
| | | |
Collapse
|
2
|
Passali CG, Santantonio M, Passali D. The current possibilities of diagnosing and therapies for olfactory disorders. Expert Opin Pharmacother 2024; 25:973-983. [PMID: 38935483 DOI: 10.1080/14656566.2024.2368243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Olfactory disorders significantly affect individuals, diminishing their capacity to detect dangers, appreciate flavors, and engage socially. Despite their considerable impact on quality of life, these disorders often receive less attention compared to other sensory impairments. This review emphasizes the importance of olfactory function and explores both traditional and innovative diagnostic and therapeutic approaches. AREAS COVERED This review comprehensively covers the pathophysiology, diagnostic challenges, and treatment options for olfactory disorders. It delves into the nuances of different disorders, such as anosmia and parosmia, and discusses the array of diagnostic tools from traditional sniff tests to advanced imaging techniques. The review also evaluates therapeutic strategies, from pharmacological treatments to emerging therapies like electrical stimulation and regenerative medicine, highlighting recent advances in the field. EXPERT OPINION Current insights suggest a growing recognition of the significance of olfactory disorders, driven by recent pandemics and advances in diagnostic and therapeutic technologies. Future perspectives indicate a promising direction toward more personalized medicine approaches and enhanced regenerative therapies. Continuous research and improved clinical awareness are critical for evolving the management strategies of olfactory impairments, potentially leading to better patient outcomes and quality of life enhancements.
Collapse
Affiliation(s)
- Cesare Giulio Passali
- Division of Otorhinolaryngology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariaconsiglia Santantonio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Desiderio Passali
- IFOS Former President, ORL Head and Neck Surgery, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Gao X, Su B, Sun Z, Xu L, Wei Y, Wu D. Patterns of Gray and White Matter Volume Alterations in Patients With Post-Traumatic Anosmia: A Voxel-Based Morphometry Study. Front Neurol 2022; 13:690760. [PMID: 35860485 PMCID: PMC9289146 DOI: 10.3389/fneur.2022.690760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTraumatic brain injury is one of the major causes of human olfactory dysfunction and leads to brain structure alterations, mainly in the cortical olfactory regions. Our study aimed to investigate volume changes in the gray matter (GM) and white matter (WM) in patients with post-traumatic anosmia and then to explore the relationship between GM volume and olfactory function.MethodsEthics committee approved prospective studies which included 22 patients with post-traumatic anosmia and 18 age- and gender-matched healthy volunteers. Olfactory function was assessed using the Sniffin' Sticks. High-resolution 3-dimensional T1 MRIs of the participants were acquired on a 3T scanner and the data were collected for voxel-based morphometry (VBM) analysis. Furthermore, the GM and WM volumes of the whole brain regions were compared and correlated with olfactory function.ResultsThe analysis revealed significant GM volume reduction in the orbitofrontal cortex (OFC), gyrus rectus (GR), olfactory cortex, insula, parahippocampal, temporal pole, and cerebellum (all P < 0.001) in patients. Besides, WM volume loss was also found in the OFC, GR, and insula (all P < 0.001) in patients. All WM atrophy areas were connected to areas of GM volume loss spatially. Correlation analysis showed the olfactory scores were significantly positively correlated with the GM volume of the occipital cortex (P < 0.001, and PFWE < 0.05), while no significant correlation was found between the Sniffin' Sticks test scores and the WM volume in patients.ConclusionThe reduction of GM and WM volume in olfactory-related regions was responsible for olfactory dysfunction in post-traumatic patients. The occipital cortex may play a compensation mechanism to maintain the residual olfactory function. To our knowledge, we report here for the first time on white matter volume alterations specifically in post-traumatic patients with anosmia.
Collapse
Affiliation(s)
- Xing Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Baihan Su
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhifu Sun
- Department of Otolaryngology, Smell and Taste Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Medical Imaging, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Otorhinolaryngology-Head and Neck Surgery, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Yongxiang Wei
| | - Dawei Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University Third Hospital, Beijing, China
- Dawei Wu
| |
Collapse
|
4
|
He S, Peng T, He W, Gou C, Hou C, Tan J, Wang X. Comparative Study of Brain fMRI of Olfactory Stimulation in Neuromyelitis Optica Spectrum Disease and Multiple Sclerosis. Front Neurosci 2022; 15:813157. [PMID: 35082598 PMCID: PMC8785660 DOI: 10.3389/fnins.2021.813157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To observe the characteristics of brain fMRI during olfactory stimulation in patients with neuromyelitis optica spectrum disease (NMOSD) and multiple sclerosis (MS), compare the differences of brain functional activation areas between patients with NMOSD and MS, and explore the characteristics of olfactory-related brain networks of NMOSD and MS. Methods: Nineteen patients with NMOSD and 16 patients with MS who met the diagnostic criteria were recruited, and 19 healthy controls matched by sex and age were recruited. The olfactory function of all participants was assessed using the visual analog scale (VAS). Olfactory stimulation was alternately performed using a volatile body (lavender and rose solution) and the difference in brain activation was evaluated by task-taste fMRI scanning simultaneously. Results: Activation intensity was weaker in the NMOSD group than in the healthy controls, including the left rectus, right superior temporal gyrus, and left cuneus. The activation intensity was stronger for the NMOSD than the controls in the left insula and left middle frontal gyrus (P < 0.05). Activation intensity was weaker in the MS group than the healthy controls in the bilateral hippocampus, right parahippocampal gyrus, right insula, left rectus gyrus, and right precentral gyrus, and stronger in the left paracentral lobule among the MS than the controls (P < 0.05). Compared with the MS group, activation intensity in the NMOSD group was weaker in the right superior temporal gyrus and left paracentral lobule, while it was stronger among the NMOSD group in the bilateral insula, bilateral hippocampus, bilateral parahippocampal gyrus, left inferior orbital gyrus, left superior temporal gyrus, left putamen, and left middle frontal gyrus (P < 0.05). Conclusion: Olfactory-related brain networks are altered in both patients, and there are differences between their olfactory-related brain networks. It may provide a new reference index for the clinical differentiation and disease evaluation of NMOSD and MS. Moreover, further studies are needed.
Collapse
Affiliation(s)
- Shaoyue He
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
- Department of Neurology, The People’s Hospital of Dazu, Chongqing, China
| | - Tingting Peng
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Weiwei He
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chen Gou
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Changyue Hou
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
| | - Juan Tan
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Juan Tan,
| | - Xiaoming Wang
- Institute of Neurological Diseases, North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- *Correspondence: Xiaoming Wang,
| |
Collapse
|
5
|
Peris-Sampedro F, Stoltenborg I, Le May MV, Sole-Navais P, Adan RAH, Dickson SL. The Orexigenic Force of Olfactory Palatable Food Cues in Rats. Nutrients 2021; 13:nu13093101. [PMID: 34578979 PMCID: PMC8471864 DOI: 10.3390/nu13093101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered. By means of a home-cage hidden palatable food paradigm, aiming to mimic ubiquitous exposure to olfactory food cues in Western societies, we investigated whether the latter could drive the overeating of plain chow in non-food-deprived male rats and explored the neural mechanisms involved, including the possible engagement of the orexigenic ghrelin system. The olfactory detection of a familiar, palatable food impacted upon meal patterns, by increasing meal frequency, to cause the persistent overconsumption of chow. In line with the orexigenic response observed, sensing the palatable food in the environment stimulated food-seeking and risk-taking behavior, which are intrinsic components of food acquisition, and caused active ghrelin release. Our results suggest that olfactory food cues recruited intermingled populations of cells embedded within the feeding circuitry within the Arc, including, notably, those containing the ghrelin receptor. These data demonstrate the leverage of ubiquitous food cues, not only for palatable food searching, but also to powerfully drive food consumption in ways that resonate with heightened hunger, for which the orexigenic ghrelin system is implicated.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
- Correspondence: (F.P.-S.); (S.L.D.); Tel.: +46-31-786-35-35 (F.P.-S.); +46-31-786-35-68 (S.L.D.)
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
| | - Marie V. Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
| | - Pol Sole-Navais
- Department of Obstetrics and Gynaecology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Roger A. H. Adan
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands
| | - Suzanne L. Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
- Correspondence: (F.P.-S.); (S.L.D.); Tel.: +46-31-786-35-35 (F.P.-S.); +46-31-786-35-68 (S.L.D.)
| |
Collapse
|
6
|
Fumero A, Marrero RJ, Rivero F, Alvarez-Pérez Y, Bethencourt JM, González M, Peñate W. Neuronal Correlates of Small Animal Phobia in Human Subjects through fMRI: The Role of the Number and Proximity of Stimuli. Life (Basel) 2021; 11:life11040275. [PMID: 33810230 PMCID: PMC8065419 DOI: 10.3390/life11040275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Brain regions involved in small-animal phobia include subcortical and cortical areas. The present study explored the neuronal correlates of small-animal phobia through fMRI data to determine whether a manipulation of number and proximity parameters affects the neurobiology of the processing of feared stimuli. The participants were 40 individuals with phobia and 40 individuals without phobia (28.7% male and 71.3% female). They watched videos of real and virtual images of spiders, cockroaches and lizards in motion presented more or less nearby with one or three stimuli in the different conditions. The results suggested a differential brain activity between participants with and without phobia depending on the proximity and number of phobic stimuli. Proximity activated the motor response marked by the precentral gyrus and the cingulate gyrus. By contrast, the number of stimuli was associated with significant sensory activity in the postcentral gyrus and ventromedial prefrontal cortex. We also observed a greater activity in the occipital cortex when exploring the number compared to the proximity factor. Threatening stimuli presented nearby and those presented in greater numbers generated an intense phobic response, suggesting a different emotion regulation strategy. Based on these findings, exposure therapies might consider including proximity to the threat and number of stimuli as key factors in treatment.
Collapse
Affiliation(s)
- Ascensión Fumero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; (R.J.M.); (F.R.); (J.M.B.); (M.G.); (W.P.)
- Correspondence:
| | - Rosario J. Marrero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; (R.J.M.); (F.R.); (J.M.B.); (M.G.); (W.P.)
| | - Francisco Rivero
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; (R.J.M.); (F.R.); (J.M.B.); (M.G.); (W.P.)
- Facultad de Ciencias de la Salud, Universidad Europea de Canarias, 38300 La Orotava, Tenerife, Spain
| | | | - Juan Manuel Bethencourt
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; (R.J.M.); (F.R.); (J.M.B.); (M.G.); (W.P.)
| | - Manuel González
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; (R.J.M.); (F.R.); (J.M.B.); (M.G.); (W.P.)
| | - Wenceslao Peñate
- Departamento de Psicología Clínica, Psicobiología y Metodología, Facultad de Psicología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain; (R.J.M.); (F.R.); (J.M.B.); (M.G.); (W.P.)
| |
Collapse
|