1
|
Venturi S, Randazzo A, Cabassi J, Cinti D, Meloni F, Procesi M, Nisi B, Voltattorni N, Capecchiacci F, Ricci T, Vaselli O, Tassi F. Volatile organic compounds (VOCs) from diffuse degassing areas: Interstitial soil gases as message bearers from deep hydrothermal reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169047. [PMID: 38061657 DOI: 10.1016/j.scitotenv.2023.169047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
The chemical composition of volatile organic compounds (VOCs) in interstitial soil gases from hydrothermal areas is commonly shaped by both deep hydrothermal conditions (e.g., temperature, redox, sulfur fugacity) and shallow secondary processes occurring near the soil-atmosphere interface. Caldara di Manziana and Solfatara di Nepi, i.e., two hydrothermal systems characterized by diverse physicochemical conditions located in the Sabatini Volcanic District and Vicano-Cimino Volcanic District, respectively (Central Italy), were investigated to evaluate the capability of VOCs in soil gases to preserve information from the respective feeding deep fluid reservoirs. Hierarchical cluster analyses and robust principal component analyses allowed recognition of distinct groups of chemical parameters of soil gases collected from the two study areas. The compositional dissimilarities from the free-gas discharges were indeed reflected by the chemical features of soil gases collected from each site, despite the occurrence of shallow processes, e.g., air mixing and microbial degradation processes, affecting VOCs. Four distinct groups of VOCs were recognized suggesting similar sources and/or geochemical behaviors, as follows: (i) S-bearing compounds, whose abundance (in particular that of thiophenes) was strictly dependent on the sulfur fugacity in the feeding system; (ii) C4,5,7+ alkanes, n-hexane, cyclics and alkylated aromatics, related to relatively low-temperature conditions at the gas source; (iii) C2,3 alkanes, benzene, benzaldehyde and phenol, i.e., stable compounds and thermal degradation products; and (iv) aliphatic O-bearing compounds, largely influenced by shallow processes within the soil. However, they maintain a chemical speciation that preserves a signature derived from the supplying deep-fluids, with aldehydes and ketones becoming more enriched after intense interaction of the hypogenic fluids with shallow aquifers. Accordingly, the empirical results of this study suggest that the chemical composition of VOCs in soil gases from hydrothermal areas provides insights into both deep source conditions and fluid circulation dynamics, identifying VOCs as promising geochemical tracers for geothermal exploration.
Collapse
Affiliation(s)
- Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy.
| | - Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy
| | - Jacopo Cabassi
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy
| | - Daniele Cinti
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma 1, via di Vigna Murata 605, 00143 Roma 1, Italy
| | - Federica Meloni
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy
| | - Monia Procesi
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma 1, via di Vigna Murata 605, 00143 Roma 1, Italy
| | - Barbara Nisi
- Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy
| | - Nunzia Voltattorni
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma 1, via di Vigna Murata 605, 00143 Roma 1, Italy
| | - Francesco Capecchiacci
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy; Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Napoli, via Diocleziano 328, 80122 Napoli, Italy
| | - Tullio Ricci
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma 1, via di Vigna Murata 605, 00143 Roma 1, Italy
| | - Orlando Vaselli
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy; Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; Institute of Geosciences and Earth Resources (IGG), National Research Council of Italy (CNR), Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
2
|
Diederich P, Seitz C, Buckett L, Salzer L, Geisberger T, Eisenreich W, Huber C, Schmitt-Kopplin P. Nickel-organo compounds as potential enzyme precursors under simulated early Earth conditions. Commun Chem 2024; 7:33. [PMID: 38361005 PMCID: PMC10869729 DOI: 10.1038/s42004-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
The transition from inorganic catalysis through minerals to organic catalysis by enzymes is a necessary step in the emergence of life. Our work is elucidating likely reactions at the earliest moments of Life, prior to the existence of enzymatic catalysis, by exploring essential intersections between nickel bioinorganic chemistry and pterin biochemistry. We used a prebiotically-inspired acetylene-containing volcanic hydrothermal experimental environment to shed light on the efficient formation of nickel-organo complexes. The simplest bis(dithiolene)nickel complex (C2H2S2)2Ni was identified by UV/Vis spectroscopy, mass spectrometry, nuclear magnetic resonance. Its temporal progression and possible function in this simulated early Earth atmosphere were investigated by isolating the main bis(dithiolene)nickel species from the primordial experimental setup. Using this approach, we uncovered a significant diversity of nickel-organo compositions by identifying 156 elemental annotations. The formation of acetaldehyde through the subsequent degradation of these organo-metal complexes is intriguing, as it is reminiscent of the ability of Pelobacter acetylenicus to hydrate acetylene to acetaldehyde via its bis(dithiolene)-containing enzyme acetylene hydratase. As our findings mechanistically characterize the role of nickel sulfide in catalyzing the formation of acetaldehyde, this fundamental pre-metabolic reaction could play the role of a primitive enzyme precursor of the enzymatic acetylene metabolism and further strengthen the role of acetylene in the molecular origin of life.
Collapse
Affiliation(s)
- Philippe Diederich
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Christian Seitz
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Lance Buckett
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Liesa Salzer
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Thomas Geisberger
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Wolfgang Eisenreich
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Claudia Huber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany.
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
- Max Planck Institute for Extraterrestrial Physics, Center for Astrochemical Studies, Gießebachstraße 1, 85748, Garching bei München, Germany.
| |
Collapse
|
3
|
Diederich P, Ruf A, Geisberger T, Weidner L, Seitz C, Eisenreich W, Huber C, Schmitt-Kopplin P. C2-addition patterns emerging from acetylene and nickel sulfide in simulated prebiotic hydrothermal conditions. Commun Chem 2023; 6:220. [PMID: 37828122 PMCID: PMC10570370 DOI: 10.1038/s42004-023-01021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Chemical complexity is vital not only for the origin of life but also for biological evolution. The chemical evolution of a complex prebiotic mixture containing acetylene, carbon monoxide (CO), and nickel sulfide (NiS) has been analyzed with mass spectrometry as an untargeted approach to reaction monitoring. Here we show through isotopic 13C-labelling, multiple reaction products, encompassing diverse CHO and CHOS compounds within the complex reaction mixture. Molecules within the same chemical spaces displayed varying degrees of 13C-labelling, enabling more robust functional group characterization based on targeted investigations and differences in saturation levels among the described classes. A characteristic C2-addition pattern was detected in all compound classes in conjunction with a high diversity of thio acids, reminiscent of extant microbial C2-metabolism. The analysis involved a time-resolved molecular network, which unveiled the behavior of sulfur in the system. At the onset of the reaction, early formed compounds contain more sulfur atoms compared to later emerging compounds. These results give an essential insight into the still elusive role of sulfur dynamics in the origin of life. Moreover, our results provide temporally resolved evidence of the progressively increasing molecular complexity arising from a limited number of compounds.
Collapse
Affiliation(s)
- Philippe Diederich
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Alexander Ruf
- Excellence Cluster ORIGINS, Boltzmannstraße 2, 85748, Garching, Germany
- LMU Munich, Faculty of Physics, Schellingstraße 4, 80799, Munich, Germany
| | - Thomas Geisberger
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Leopold Weidner
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - Christian Seitz
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Wolfgang Eisenreich
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Claudia Huber
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center (BNMRZ), Structural Membrane Biochemistry, Lichtenbergstr. 4, 85748, Garching, Germany.
| | - Philippe Schmitt-Kopplin
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany.
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
- Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Gießebachstraße 1, 85748, Garching bei München, Germany.
| |
Collapse
|
4
|
Diederich P, Geisberger T, Yan Y, Seitz C, Ruf A, Huber C, Hertkorn N, Schmitt-Kopplin P. Formation, stabilization and fate of acetaldehyde and higher aldehydes in an autonomously changing prebiotic system emerging from acetylene. Commun Chem 2023; 6:38. [PMID: 36813975 PMCID: PMC9947100 DOI: 10.1038/s42004-023-00833-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Many essential building blocks of life, including amino acids, sugars, and nucleosides, require aldehydes for prebiotic synthesis. Pathways for their formation under early earth conditions are therefore of great importance. We investigated the formation of aldehydes by an experimental simulation of primordial early earth conditions, in line with the metal-sulfur world theory in an acetylene-containing atmosphere. We describe a pH-driven, intrinsically autoregulatory environment that concentrates acetaldehyde and other higher molecular weight aldehydes. We demonstrate that acetaldehyde is rapidly formed from acetylene over a nickel sulfide catalyst in an aqueous solution, followed by sequential reactions progressively increasing the molecular diversity and complexity of the reaction mixture. Interestingly, through inherent pH changes, the evolution of this complex matrix leads to auto-stabilization of de novo synthesized aldehydes and alters the subsequent synthesis of relevant biomolecules rather than yielding uncontrolled polymerization products. Our results emphasize the impact of progressively generated compounds on the overall reaction conditions and strengthen the role of acetylene in forming essential building blocks that are fundamental for the emergence of terrestrial life.
Collapse
Affiliation(s)
- Philippe Diederich
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Thomas Geisberger
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Yingfei Yan
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Christian Seitz
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Alexander Ruf
- grid.510544.1Excellence Cluster ORIGINS, Boltzmannstraße 2, 85748 Garching, Germany ,grid.5252.00000 0004 1936 973XFaculty of Physics, LMU Munich, Schellingstraße 4, 80799 Munich, Germany
| | - Claudia Huber
- grid.6936.a0000000123222966Technical University of Munich Structural Membrane Biochemistry, BNMRZ, Lichtenbergstr 4, 85748 Garching, Germany
| | - Norbert Hertkorn
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Munich, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany. .,Technical University of Munich, Analytische Lebensmittel Chemie; Maximus-von-Forum 2, 85354, Freising, Germany. .,Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Gießebachstraße 1, 85748, Garching bei München, Germany.
| |
Collapse
|
5
|
The Abiotic Formation of Pyrrole under Volcanic, Hydrothermal Conditions-An Initial Step towards Life's First Breath? Life (Basel) 2021; 11:life11090980. [PMID: 34575129 PMCID: PMC8471139 DOI: 10.3390/life11090980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Porphyrins, corrins, and tetrapyrroles constitute macrocycles in essential biomolecules such as heme, chlorophyll, cobalamin, and cofactor F430. The chemical synthesis as well as the enzymatic synthesis of these macrocycles starts from pyrrole derivatives. We here show that pyrrole and dimethyl pyrrole can be formed under the simulated volcanic, hydrothermal conditions of Early Earth, starting from acetylene, propyne, and ammonium salts in the presence of NiS or CoS as catalysts.
Collapse
|