1
|
Ghani S, Bandehpour M, Yarian F, Baghaei K, Kazemi B. Production of a Ribosome-Displayed Mouse scFv Antibody Against CD133, Analysis of Its Molecular Docking, and Molecular Dynamic Simulations of Their Interactions. Appl Biochem Biotechnol 2024; 196:1399-1418. [PMID: 37410352 DOI: 10.1007/s12010-023-04609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The pentaspan transmembrane glycoprotein CD133, prominin-1, is expressed in cancer stem cells in many tumors and is promising as a novel target for the delivery of cytotoxic drugs to cancer-initiating cells. In this study, we prepared a mouse library of single-chain variable fragment (scFv) antibodies using mRNAs isolated from mice immunized with the third extracellular domain of a recombinant CD133 (D-EC3). First, the scFvs were directly exposed to D-EC3 to select a new specific scFv with high affinity against CD133 using the ribosome display method. Then, the selected scFv was characterized by the indirect enzyme-linked immunosorbent assay (ELISA), immunocytochemistry (ICC), and in silico analyses included molecular docking and molecular dynamics simulations. Based on ELISA results, scFv 2 had a higher affinity for recombinant CD133, and it was considered for further analysis. Next, the immunocytochemistry and flow cytometry experiments confirmed that the obtained scFv could bind to the CD133 expressing HT-29 cells. Furthermore, the results of in silico analysis verified the ability of the scFv 2 antibody to bind and detect the D-EC3 antigen through key residues employed in antigen-antibody interactions. Our results suggest that ribosome display could be applied as a rapid and valid method for isolation of scFv with high affinity and specificity. Also, studying the mechanism of interaction between CD133's scFv and D-EC3 with two approaches of experimental and in silico analysis has potential importance for the design and development of antibody with improved properties.
Collapse
Affiliation(s)
- Sepideh Ghani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Yarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Novel Self-Forming Nanosized DDS Particles for BNCT: Utilizing A Hydrophobic Boron Cluster and Its Molecular Glue Effect. Cells 2022; 11:cells11203307. [PMID: 36291173 PMCID: PMC9600043 DOI: 10.3390/cells11203307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
BNCT is a non-invasive cancer therapy that allows for cancer cell death without harming adjacent cells. However, the application is limited, owing to the challenges of working with clinically approved boron (B) compounds and drug delivery systems (DDS). To address the issues, we developed self-forming nanoparticles consisting of a biodegradable polymer, namely, “AB-type Lactosome (AB-Lac)” loaded with B compounds. Three carborane isomers (o-, m-, and p-carborane) and three related alkylated derivatives, i.e., 1,2-dimethy-o-carborane (diC1-Carb), 1,2-dihexyl-o-carborane (diC6-Carb), and 1,2-didodecyl-o-carborane (diC12-Carb), were separately loaded. diC6-Carb was highly loaded with AB-Lac particles, and their stability indicated the “molecular glue” effect. The efficiency of in vitro B uptake of diC6-Carb for BNCT was confirmed at non-cytotoxic concentration in several cancer cell lines. In vivo/ex vivo biodistribution studies indicated that the AB-Lac particles were remarkably accumulated within 72 h post-injection in the tumor lesions of mice bearing syngeneic breast cancer (4T1) cells, but the maximum accumulation was reached at 12 h. In ex vivo B biodistribution, the ratios of tumor/normal tissue (T/N) and tumor/blood (T/Bl) of the diC6-Carb-loaded particles remained stably high up to 72 h. Therefore, we propose the diC6-Carb-loaded AB-Lac particles as a promising candidate medicine for BNCT.
Collapse
|
3
|
Uji H, Watabe N, Komi T, Sakaguchi T, Akamatsu R, Mihara K, Kimura S. Downsizing to 25-nm reverse polymeric micelle composed of AB3-type polydepsipeptide with comprising siRNA. CHEM LETT 2022. [DOI: 10.1246/cl.210704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirotaka Uji
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Naoki Watabe
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Tatsuya Komi
- Drug Discovery Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., 92 Awata-cho, Chudoji, Shimogyo-ku, Kyoto, 600-8815
| | - Tomoki Sakaguchi
- Drug Discovery Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., 92 Awata-cho, Chudoji, Shimogyo-ku, Kyoto, 600-8815
| | - Ryo Akamatsu
- Drug Discovery Research Laboratories, Kyoto R&D Center, Maruho Co., Ltd., 92 Awata-cho, Chudoji, Shimogyo-ku, Kyoto, 600-8815
| | - Kenta Mihara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510
| |
Collapse
|
4
|
Ladju RB, Ulhaq ZS, Soraya GV. Nanotheranostics: A powerful next-generation solution to tackle hepatocellular carcinoma. World J Gastroenterol 2022; 28:176-187. [PMID: 35110943 PMCID: PMC8776531 DOI: 10.3748/wjg.v28.i2.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an epidemic burden and remains highly prevalent worldwide. The significant mortality rates of HCC are largely due to the tendency of late diagnosis and the multifaceted, complex nature of treatment. Meanwhile, current therapeutic modalities such as liver resection and transplantation are only effective for resolving early-stage HCC. Hence, alternative approaches are required to improve detection and enhance the efficacy of current treatment options. Nanotheranostic platforms, which utilize biocompatible nanoparticles to perform both diagnostics and targeted delivery, has been considered a potential approach for cancer management in the past few decades. Advancement of nanomaterials and biomedical engineering techniques has led to rapid expansion of the nanotheranostics field, allowing for more sensitive and specific diagnosis, real-time monitoring of drug delivery, and enhanced treatment efficacies across various malignancies. The focus of this review is on the applications of nanotheranostics for HCC. The review first explores the current epidemiology and the commonly encountered obstacles in HCC diagnosis and treatment. It then presents the current technological and functional advancements in nanotheranostic technology for cancer in general, and then specifically explores the use of nanotheranostic modalities as a promising option to address the key challenges present in HCC management.
Collapse
Affiliation(s)
- Rusdina Bte Ladju
- Department of Anatomic Pathology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Zulvikar Syambani Ulhaq
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University, Malang 65151, Indonesia
- National Research and Innovation Agency, Central Jakarta 10340, Indonesia
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Department of Neurology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
5
|
Talamini L, Matsuura E, De Cola L, Muller S. Immunologically Inert Nanostructures as Selective Therapeutic Tools in Inflammatory Diseases. Cells 2021; 10:cells10030707. [PMID: 33806746 PMCID: PMC8004653 DOI: 10.3390/cells10030707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
The current therapies based on immunosuppressant or new biologic drugs often show some limitations in term of efficacy and applicability, mainly because of their inadequate targeting and of unwanted adverse reactions they generate. To overcome these inherent problems, in the last decades, innovative nanocarriers have been developed to encapsulate active molecules and offer novel promising strategies to efficiently modulate the immune system. This review provides an overview of how it is possible, exploiting the favorable features of nanocarriers, especially with regard to their immunogenicity, to improve the bioavailability of novel drugs that selectively target immune cells in the context of autoimmune disorders and inflammatory diseases. A focus is made on nanoparticles that selectively target neutrophils in inflammatory pathologies.
Collapse
Affiliation(s)
- Laura Talamini
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
| | - Eiji Matsuura
- Neutron Therapy Research Center, Collaborative Research Center, Department of Cell Chemistry, Okayama University, Okayama 700-8558, Japan
| | - Luisa De Cola
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Pharmaceutical Sciences (DISFARM), University of Milano, 20122 Milan, Italy
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France/Strasbourg Drug Discovery and Development Institute (IMS), Institut de Science et D'Ingénierie Supramoléculaire, 67000 Strasbourg, France
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|