1
|
Chatow L, Nudel A, Eyal N, Lupo T, Ramirez S, Zelinger E, Nesher I, Boxer R. Terpenes and cannabidiol against human corona and influenza viruses-Anti-inflammatory and antiviral in vitro evaluation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00829. [PMID: 38318445 PMCID: PMC10840330 DOI: 10.1016/j.btre.2024.e00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
The activity of the terpenes and Cannabidiol (CBD) against human coronavirus (HCoV) strain OC43 and influenza A (H1N1) was evaluated in human lung fibroblasts (MRC-5 cells). Also, we examined whether these ingredients inhibit pro-inflammatory cytokines in peripheral blood mononuclear cells (PBMC). The tested preparations exhibited both anti-inflammatory and antiviral effects. The combination of terpenes was effective against both HCoV-OC43 and influenza A (H1N1) virus. The addition of CBD improved the antiviral activity in some, but not all cases. This variation in activity may suggest an antiviral mechanism. In addition, there was a strong correlation between the quantitative results from a cell-viability assay and the cytopathic effect after 72 h, as observed under a microscope. The anti-inflammatory properties of terpenes were demonstrated using a pro-inflammatory cytokine-inhibition assay, which revealed significant cytokine inhibition and enhanced by the addition of CBD.
Collapse
Affiliation(s)
| | - Adi Nudel
- Eybna Technologies Ltd., Kfar Saba, Israel
| | - Nadav Eyal
- Eybna Technologies Ltd., Kfar Saba, Israel
| | - Tal Lupo
- Eybna Technologies Ltd., Kfar Saba, Israel
| | | | - Einat Zelinger
- CSI Center for Scientific Imaging Faculty of Agriculture, Hebrew University, Rehovot, Israel
| | | | - Richard Boxer
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ameri A, Farashahinejad M, Davoodian P, Safa O, Kusha A, Dadvand H, Hassanipour S, Fathalipour M. Efficacy and safety of licorice (Glycyrrhiza glabra) in moderately ill patients with COVID-19: a randomized controlled trial. Inflammopharmacology 2023; 31:3037-3045. [PMID: 37847472 DOI: 10.1007/s10787-023-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Licorice extract (glycyrrhizin), a potent antiviral, anti-inflammatory, and antioxidant remedy, is a potential therapeutic option for COVID-19. We evaluated the efficacy and safety of licorice in patients with moderate COVID-19. In this study, 60 patients with confirmed COVID-19 were randomly assigned in a 1:1 ratio to receive licorice (at a dose of 760 mg three times a day for seven days) or control groups. The primary outcomes were SPO2, body temperature, and respiratory rate (RR) after the end of the intervention. The findings indicated that SPO2, body temperature, and RR had no significant difference between the groups at the end of the intervention. However, CRP and ALT improved in the licorice group toward the baseline. The number of patients with worse prognoses, LOS, mortality, and the incidence of adverse events were not different between the groups at the end of the study. Licorice had no beneficial effect on the clinical symptoms of COVID-19. Moreover, this intervention demonstrated a safe profile of adverse events. The confirmation of the results of this preparatory trial requires more detailed multiple-center trials with a larger sample size.
Collapse
Affiliation(s)
- Ali Ameri
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Farashahinejad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parivash Davoodian
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Kusha
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Habib Dadvand
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Khosropoor S, Alavi MS, Etemad L, Roohbakhsh A. Cannabidiol goes nuclear: The role of PPARγ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154771. [PMID: 36965374 DOI: 10.1016/j.phymed.2023.154771] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/06/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main phytocannabinoids found in Cannabis sativa. In contrast to Δ9-tetrahydrocannabinol, it has a low affinity for cannabinoid receptors CB1 and CB2, thereby it does not induce significant psychoactive effects. However, CBD may interact with other receptors, including peroxisome proliferator-activated receptor gamma (PPARγ). CBD is a PPARγ agonist and changes its expression. There is considerable evidence that CBD's effects are mediated by its interaction with PPARγ. So, we reviewed studies related to the interaction of CBD and PPARγ. METHODS In this comprehensive literature review, the term 'cannabidiol' was used in combination with the following keywords including 'PPARγ', 'Alzheimer's disease', 'Parkinson's disease', 'seizure', 'multiple sclerosis', 'immune system', 'cardiovascular system', 'cancer', and 'adipogenesis'. PubMed, Web of Science, and Google Scholar were searched until December 20, 2022. A total of 78 articles were used for the reviewing process. RESULTS CBD, via activation of PPARγ, promotes significant pharmacological effects. The present review shows that the effects of CBD on Alzheimer's disease and memory, Parkinson's disease and movement disorders, multiple sclerosis, anxiety and depression, cardiovascular system, immune system, cancer, and adipogenesis are mediated, at least in part, via PPARγ. CONCLUSION CBD not only activates PPARγ but also affects its expression in the body. It was suggested that the late effects of CBD are mediated via PPARγ activation. We suggested that CBD's chemical structure is a good backbone for developing new dual agonists. Combining it with other chemicals enhances their biological effectiveness while reducing their dosage. The present study indicated that PPARγ is a key target for CBD, and its activation by CBD should be considered in all future studies.
Collapse
Affiliation(s)
- Sara Khosropoor
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Zhang Z, Fu X, Wang Y, Wang J, Feng S, Zhao Z, Zheng L, Zhang J, Zhang X, Peng Y. In vivo anti-hepatitis B activity of Artemisia argyi essential oil-loaded nanostructured lipid carriers. Study of its mechanism of action by network pharmacology and molecular docking. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154848. [PMID: 37163901 DOI: 10.1016/j.phymed.2023.154848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection remains a major global health burden, due to the increasing risk of complications, such as cirrhosis and hepatocellular carcinoma. Novel anti-HBV agents are critical required. Our previous study suggested that Artemisia argyi essential oil (AAEO) significantly inhibited the replication of HBV DNA and especially the secretion of hepatitis B antigen in vitro. PURPOSE The aim of this study was to prepare AAEO loaded nanostructured lipid carriers (AAEO-NLCs) for the delivery of AAEO to the liver, investigated the therapeutic benefits of AAEO-NLCs against HBV in a duck HBV (DHBV) model and explored its potential mechanism. STUDY DESIGN AND METHODS AAEO-NLCs were prepared by hot homogenization and ultrasonication method. The DHBV-infected ducks were treated with AAEO (4 mg/kg), AAEO-NLCs (0.8, 4, and 20 mg/kg of AAEO), and lamivudine (20 mg/kg) for 15 days. The DHBV DNA levels in the serum and liver were measured by quantitative Real-Time PCR. Pharmacokinetics and liver distribution were performed in rats after oral administration of AAEO-NLCs and AAEO suspension. The potential antiviral mechanism and active compounds of AAEO were investigated by network pharmacology and molecular docking. RESULTS AAEO-NLCs markedly inhibited the replication of DHBV DNA in a dose-dependent manner and displayed a low virologic rebound following withdrawal the treatment in DHBV-infected ducks. Moreover, AAEO-NLCs led to a more pronounced reduction in viral DNA levels than AAEO suspension. Further investigations of pharmacokinetics and liver distribution in rats confirmed that NLCs improved the oral bioavailability and increased the liver exposure of AAEO. The potential mechanisms of AAEO against HBV explored by network pharmacology were associated with signaling pathways related to immune response, such as tumor necrosis factor, nuclear factor kappa B, and sphingolipid signaling pathways. Furthermore, a total of 16 potential targets were obtained, including prostaglandin-endoperoxide synthase-2 (PTGS2), caspase-3, progesterone receptor, etc. Compound-target docking results confirmed that four active compounds of AAEO had strong binding interactions with the active sites of PTGS2. CONCLUSIONS AAEO-NLCs displayed potent anti-HBV activity with improved oral bioavailability and liver exposure of AAEO. Thus, it may be a potential therapeutic strategy for the treatment of HBV infection.
Collapse
Affiliation(s)
- Zhuangli Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoqian Fu
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Basic Medical Science, Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yarong Wang
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Wang
- Henan Institute for Drug and Medical Device Control, Zhengzhou 450018, China
| | - Shiyang Feng
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihong Zhao
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liyun Zheng
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingmin Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojun Zhang
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Hong H, Sloan L, Saxena D, Scott DA. The Antimicrobial Properties of Cannabis and Cannabis-Derived Compounds and Relevance to CB2-Targeted Neurodegenerative Therapeutics. Biomedicines 2022; 10:1959. [PMID: 36009504 PMCID: PMC9406052 DOI: 10.3390/biomedicines10081959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP-microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.
Collapse
Affiliation(s)
- HeeJue Hong
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Lucy Sloan
- Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Deepak Saxena
- Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - David A. Scott
- Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Brahmi F, Vejux A, Ghzaiel I, Ksila M, Zarrouk A, Ghrairi T, Essadek S, Mandard S, Leoni V, Poli G, Vervandier-Fasseur D, Kharoubi O, El Midaoui A, Atanasov AG, Meziane S, Latruffe N, Nasser B, Bouhaouala-Zahar B, Masmoudi-Kouki O, Madani K, Boulekbache-Makhlouf L, Lizard G. Role of Diet and Nutrients in SARS-CoV-2 Infection: Incidence on Oxidative Stress, Inflammatory Status and Viral Production. Nutrients 2022; 14:2194. [PMID: 35683996 PMCID: PMC9182601 DOI: 10.3390/nu14112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.
Collapse
Affiliation(s)
- Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Anne Vejux
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Imen Ghzaiel
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
| | - Mohamed Ksila
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition-Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia;
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Soukena Essadek
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Stéphane Mandard
- Lipness Team and LipSTIC LabEx, UFR Sciences de Santé, INSERM/University of Bourgogne Franche-Comté LNC UMR1231, 21000 Dijon, France;
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Via Mazzini 1, 20833 Desio, Italy;
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, 10043 Orbassano (Turin), Italy;
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran 1 ABB, Oran 31000, Algeria;
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 52000, Morocco
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
| | - Smail Meziane
- Institut Européen des Antioxydants, 1b Rue Victor de Lespinats, 54230 Neuves-Maison, France;
| | - Norbert Latruffe
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| | - Boubker Nasser
- Laboratory Neuroscience and Biochemistry, University of Hassan 1st, Settat 26000, Morocco;
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms and Theranostic Applications, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (T.G.); (O.M.-K.)
| | - Khodir Madani
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
- Centre de Recherche en Technologie des Industries Agroalimentaires, Route de Targua Ouzemour, Bejaia 06000, Algeria
| | - Lila Boulekbache-Makhlouf
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria; (K.M.); (L.B.-M.)
| | - Gérard Lizard
- Department of Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism, University of Bourgogne Franche-Comte, 21000 Dijon, France; (A.V.); (I.G.); (M.K.); (S.E.); (N.L.)
| |
Collapse
|
7
|
Janecki M, Graczyk M, Lewandowska AA, Pawlak Ł. Anti-Inflammatory and Antiviral Effects of Cannabinoids in Inhibiting and Preventing SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms23084170. [PMID: 35456990 PMCID: PMC9025270 DOI: 10.3390/ijms23084170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus made it necessary to search for new options for both causal treatment and mitigation of its symptoms. Scientists and researchers around the world are constantly looking for the best therapeutic options. These difficult circumstances have also spurred the re-examination of the potential of natural substances contained in Cannabis sativa L. Cannabinoids, apart from CB1 and CB2 receptors, may act multifacetedly through a number of other receptors, such as the GPR55, TRPV1, PPARs, 5-HT1A, adenosine and glycine receptors. The complex anti-inflammatory and antiviral effects of cannabinoids have been confirmed by interactions with various signaling pathways. Considering the fact that the SARS-CoV-2 virus causes excessive immune response and triggers an inflammatory cascade, and that cannabinoids have the ability to regulate these processes, it can be assumed that they have potential to be used in the treatment of COVID-19. During the pandemic, there were many publications on the subject of COVID-19, which indicate the potential impact of cannabinoids not only on the course of the disease, but also their role in prevention. It is worth noting that the anti-inflammatory and antiviral potential are shown not only by well-known cannabinoids, such as cannabidiol (CBD), but also secondary cannabinoids, such as cannabigerolic acid (CBGA) and terpenes, emphasizing the role of all of the plant’s compounds and the entourage effect. This article presents a narrative review of the current knowledge in this area available in the PubMed, Scopus and Web of Science medical databases.
Collapse
Affiliation(s)
- Marcin Janecki
- Department of Palliative Care and Palliative Medicine, Silesian Medical University in Katowice, 40-752 Katowice, Poland;
| | - Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (M.G.); (A.A.L.)
| | - Agata Anna Lewandowska
- 10th Military Research Hospital and Polyclinic in Bydgoszcz, 85-681 Bydgoszcz, Poland
- Correspondence: (M.G.); (A.A.L.)
| | - Łukasz Pawlak
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
8
|
Cortes-Altamirano JL, Yáñes-Pizaña A, Reyes-Long S, Angélica GM, Bandala C, Bonilla-Jaime H, Alfaro-Rodríguez A. Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients. Curr Top Med Chem 2022; 22:1326-1345. [PMID: 35382723 DOI: 10.2174/1568026622666220405143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Estado de Mexico, 55210, Mexico
| | - Ariadna Yáñes-Pizaña
- Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico, Mexico City, 04910, México.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Samuel Reyes-Long
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 07738, México
| | - González-Maciel Angélica
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la reproducción, Universidad Autónoma Metropolitana, Mexico City, 09340, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
| |
Collapse
|
9
|
Abstract
Cannabidiol (CBD) can prevent the inflammatory response of SARS-CoV-2 spike protein in Caco-2-cells. This action is coupled with the inhibition of IL-1beta, IL-6, IL-18, and TNF-alpha, responsible for the inflammatory process during SARS-CoV-2 infection. CBD can act on the different proteins encoded by SARS-CoV-2 and as an antiviral agent to prevent the viral infection. Furthermore, recent studies have shown the possible action of CBD as an antagonist of cytokine release syndromes. In the SARS-CoV-2 pathophysiology, the angiotensin-converting enzyme 2 (ACE2) seems to be the key cell receptor for SARS-CoV-2 infection. The WNT/β-catenin pathway and PPARγ interact in an opposite manner in many diseases, including SARS-CoV-2 infection. CBD exerts its activity through the interaction with PPARγ in SARS-CoV-2 infection. Thus, we can hypothesize that CBD may counteract the inflammatory process of SARS-CoV-2 by its interactions with both ACE2 and the interplay between the WNT/β-catenin pathway and PPARγ. Vaccines are the only way to prevent COVID-19, but it appears important to find therapeutic complements to treat patients already affected by SARS-CoV-2 infection. The possible role of CBD should be investigated by clinical trials to show its effectiveness.
Collapse
|
10
|
Santos S, Barata P, Charmier A, Lehmann I, Rodrigues S, Melosini MM, Pais PJ, Sousa AP, Teixeira C, Santos I, Rocha AC, Baylina P, Fernandes R. Cannabidiol and Terpene Formulation Reducing SARS-CoV-2 Infectivity Tackling a Therapeutic Strategy. Front Immunol 2022; 13:841459. [PMID: 35242142 PMCID: PMC8886108 DOI: 10.3389/fimmu.2022.841459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
In late 2019, COVID-19 emerged in Wuhan, China. Currently, it is an ongoing global health threat stressing the need for therapeutic compounds. Linking the virus life cycle and its interaction with cell receptors and internal cellular machinery is key to developing therapies based on the control of infectivity and inflammation. In this framework, we evaluate the combination of cannabidiol (CBD), as an anti-inflammatory molecule, and terpenes, by their anti-microbiological properties, in reducing SARS-CoV-2 infectivity. Our group settled six formulations combining CBD and terpenes purified from Cannabis sativa L, Origanum vulgare, and Thymus mastichina. The formulations were analyzed by HPLC and GC-MS and evaluated for virucide and antiviral potential by in vitro studies in alveolar basal epithelial, colon, kidney, and keratinocyte human cell lines. Conclusions and Impact We demonstrate the virucide effectiveness of CBD and terpene-based formulations. F2TC reduces the infectivity by 17%, 24%, and 99% for CaCo-2, HaCat, and A549, respectively, and F1TC by 43%, 37%, and 29% for Hek293T, HaCaT, and Caco-2, respectively. To the best of our knowledge, this is the first approach that tackles the combination of CBD with a specific group of terpenes against SARS-CoV-2 in different cell lines. The differential effectiveness of formulations according to the cell line can be relevant to understanding the pattern of virus infectivity and the host inflammation response, and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Susana Santos
- R&D&Innovation Department, EXMceuticals Portugal Lda, Lisboa, Portugal.,Cooperativa de Formação e Animação Cultural - Centre for Interdisciplinary Development and Research on Environment, Applied Management and Space (COFAC-DREAMS)-Universidade Lusófona, Lisboa, Portugal
| | - Pedro Barata
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Adilia Charmier
- R&D&Innovation Department, EXMceuticals Portugal Lda, Lisboa, Portugal.,Cooperativa de Formação e Animação Cultural - Centre for Interdisciplinary Development and Research on Environment, Applied Management and Space (COFAC-DREAMS)-Universidade Lusófona, Lisboa, Portugal
| | - Inês Lehmann
- R&D&Innovation Department, EXMceuticals Portugal Lda, Lisboa, Portugal
| | | | - Matteo M Melosini
- R&D&Innovation Department, EXMceuticals Portugal Lda, Lisboa, Portugal
| | - Patrick J Pais
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - André P Sousa
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Catarina Teixeira
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Inês Santos
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Ana Catarina Rocha
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Pilar Baylina
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Ruben Fernandes
- LABMI - Laboratório de Biotecnologia Médica e Industrial, PORTIC - Porto Research, Technology and Innovation Center, Porto, Portugal.,Metabesity Deopartment, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
11
|
González-Maldonado P, Alvarenga N, Burgos-Edwards A, Flores-Giubi ME, Barúa JE, Romero-Rodríguez MC, Soto-Rifo R, Valiente-Echeverría F, Langjahr P, Cantero-González G, Sotelo PH. Screening of Natural Products Inhibitors of SARS-CoV-2 Entry. Molecules 2022; 27:1743. [PMID: 35268843 PMCID: PMC8911944 DOI: 10.3390/molecules27051743] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Pamela González-Maldonado
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (P.G.-M.); (P.L.); (G.C.-G.)
| | - Nelson Alvarenga
- Phytochemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (N.A.); (A.B.-E.)
| | - Alberto Burgos-Edwards
- Phytochemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (N.A.); (A.B.-E.)
| | - Ma. Eugenia Flores-Giubi
- Biological Chemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (M.E.F.-G.); (J.E.B.); (M.C.R.-R.)
| | - Javier E. Barúa
- Biological Chemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (M.E.F.-G.); (J.E.B.); (M.C.R.-R.)
| | - Ma. Cristina Romero-Rodríguez
- Biological Chemistry Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (M.E.F.-G.); (J.E.B.); (M.C.R.-R.)
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 834100, Chile; (R.S.-R.); (F.V.-E.)
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 834100, Chile; (R.S.-R.); (F.V.-E.)
| | - Patricia Langjahr
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (P.G.-M.); (P.L.); (G.C.-G.)
| | - Guadalupe Cantero-González
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (P.G.-M.); (P.L.); (G.C.-G.)
| | - Pablo H. Sotelo
- Biotechnology Department, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo 111421, Paraguay; (P.G.-M.); (P.L.); (G.C.-G.)
| |
Collapse
|
12
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
13
|
Sahoo A, Fuloria S, Swain SS, Panda SK, Sekar M, Subramaniyan V, Panda M, Jena AK, Sathasivam KV, Fuloria NK. Potential of Marine Terpenoids against SARS-CoV-2: An In Silico Drug Development Approach. Biomedicines 2021; 9:biomedicines9111505. [PMID: 34829734 PMCID: PMC8614725 DOI: 10.3390/biomedicines9111505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
In an emergency, drug repurposing is the best alternative option against newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, several bioactive natural products have shown potential against SARS-CoV-2 in recent studies. The present study selected sixty-eight broad-spectrum antiviral marine terpenoids and performed molecular docking against two novel SARS-CoV-2 enzymes (main protease or Mpro or 3CLpro) and RNA-dependent RNA polymerase (RdRp). In addition, the present study analysed the physiochemical-toxicity-pharmacokinetic profile, structural activity relationship, and phylogenetic tree with various computational tools to select the 'lead' candidate. The genomic diversity study with multiple sequence analyses and phylogenetic tree confirmed that the newly emerged SARS-CoV-2 strain was up to 96% structurally similar to existing CoV-strains. Furthermore, the anti-SARS-CoV-2 potency based on a protein-ligand docking score (kcal/mol) exposed that the marine terpenoid brevione F (-8.4) and stachyflin (-8.4) exhibited similar activity with the reference antiviral drugs lopinavir (-8.4) and darunavir (-7.5) against the target SARS-CoV-Mpro. Similarly, marine terpenoids such as xiamycin (-9.3), thyrsiferol (-9.2), liouvilloside B (-8.9), liouvilloside A (-8.8), and stachyflin (-8.7) exhibited comparatively higher docking scores than the referral drug remdesivir (-7.4), and favipiravir (-5.7) against the target SARS-CoV-2-RdRp. The above in silico investigations concluded that stachyflin is the most 'lead' candidate with the most potential against SARS-CoV-2. Previously, stachyflin also exhibited potential activity against HSV-1 and CoV-A59 within IC50, 0.16-0.82 µM. Therefore, some additional pharmacological studies are needed to develop 'stachyflin' as a drug against SARS-CoV-2.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Shivkanya Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (S.F.); (N.K.F.)
| | - Shasank S. Swain
- Division of Microbiology and NCDs, ICMR–Regional Medical Research Centre, Bhubaneswar 751023, Odisha, India;
| | - Sujogya K. Panda
- Center of Environment Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India;
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP 2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia;
| | - Maitreyee Panda
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Ajaya K. Jena
- Department of Skin & VD, Institute of Medical Sciences and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India; (A.S.); (M.P.); (A.K.J.)
| | - Kathiresan V. Sathasivam
- Faculty of Applied Science, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia;
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, Centre of Excellence for Biomaterials Engineering, AIMST University, Bedong 08100, Kedah, Malaysia
- Correspondence: (S.F.); (N.K.F.)
| |
Collapse
|
14
|
ONAY A, ERTAŞ A, SÜZERER V, YENER İ, YILMAZ MA, AYAZ-TİLKAT E, EKİNCİ R, BOZHAN N, İRTEGÜN-KANDEMİR S. Cannabinoids for SARS-CoV-2 and is there evidence of their therapeutic efficacy? Turk J Biol 2021; 45:570-587. [PMID: 34803455 PMCID: PMC8573844 DOI: 10.3906/biy-2105-73] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 01/08/2023] Open
Abstract
To combat the coronaviruses and their novel variants, therapeutic drugs and the development of vaccines that are to be effective throughout human life are urgently needed. The endocannabinoid system (ECS) acts as a modulator in the activation of the microcirculation, immune system, and autonomic nervous system, along with controlling pharmacological functions such as emotional responses, homeostasis, motor functions, cognition, and motivation. The ECS contains endogenous cannabinoids, cannabinoid receptor (CBRs), and enzymes that regulate their biosynthesis, transport, and degradation. Moreover, phytocannabinoids and synthetic cannabinoids that mimic the action of endocannabinoids also play an essential role in the modulation of the ECS. Cannabinoids, the main constituents of cannabis (Cannabis sativa L.), are therapeutic compounds that have received international attention in the health field due to their therapeutic properties. Recently, they have been tested for the treatment of COVID-19 due to their antiviral properties. Indeed, cannabinoid-type compounds, and in particular cannabidiol (CBD), isolated from glandular trichomes found in the calyx of cannabis flowers with reported antiviral properties is hypothesized to be a therapeutic option in the ministration of SARS-CoV-2 consorted with COVID-19 disease. The relevant articles were determined from the database search published mainly in Web of Science, Google scholar, PubMed, Crossref, and ClinicalTrials.gov database during the pandemic period. The articles were evaluated for the therapeutic potentials, mechanisms of action of cannabinoids, the roles of the ECS in the immune system, impact of cannabinoids in SARS-CoV-2 septic, especially if they address the application of cannabinoids as drugs for the curability and management of SARS-CoV-2 and its novel variants. Although the evidence needed to be considered using cannabinoids in the control and treatment of viral diseases is currently in its infancy, they already offer an opportunity for clinicians due to their effects in relieving pain, improving appetite, and improving childhood epilepsy, especially in cancer and human immunodeficiency virus (HIV/AIDS) patients. In addition to these, the most recent scientific evidence emphasizes their use in the treatment of the coronavirus infected patients. In brief, all preclinic and clinic studies that have been reported show that, through the cannabinoid system, cannabinoids, particularly CBD, have many mechanisms that are effective in the treatment of patients infected by SARS-CoV-2. Thus, more extensive studies are necessary in this area to fully identify the effects of cannabinoids on SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmet ONAY
- Department of Biology, Faculty of Science, Dicle University, DiyarbakırTurkey
| | - Abdulselam ERTAŞ
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, DiyarbakırTurkey
| | - Veysel SÜZERER
- Department of Pharmacy Services, Vocational School of Health, Bingöl University, BingölTurkey
| | - İsmail YENER
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, DiyarbakırTurkey
| | | | - Emine AYAZ-TİLKAT
- Department of Biology, Faculty of Science and Literature, Batman University, BatmanTurkey
| | - Remzi EKİNCİ
- Department of Field Crops, Faculty of Agriculture, Dicle University, DiyarbakırTurkey
| | - Nesrin BOZHAN
- Department of Biology, Faculty of Science, Dicle University, DiyarbakırTurkey
| | | |
Collapse
|