1
|
Chandy T. Intervention of next-generation sequencing in diagnosis of Alzheimer's disease: challenges and future prospects. Dement Neuropsychol 2023; 17:e20220025. [PMID: 37577182 PMCID: PMC10417152 DOI: 10.1590/1980-5764-dn-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 08/15/2023] Open
Abstract
Clinical diagnosis of several neurodegenerative disorders based on clinical phenotype is challenging due to its heterogeneous nature and overlapping disease manifestations. Therefore, the identification of underlying genetic mechanisms is of paramount importance for better diagnosis and therapeutic regimens. With the emergence of next-generation sequencing, it becomes easier to identify all gene variants in the genome simultaneously, with a system-wide and unbiased approach. Presently various bioinformatics databases are maintained on discovered gene variants and phenotypic indications are available online. Since individuals are unique in their genome, evaluation based on their genetic makeup helps evolve the diagnosis, counselling, and treatment process at the personal level. This article aims to briefly summarize the utilization of next-generation sequencing in deciphering the genetic causes of Alzheimer's disease and address the limitations of whole genome and exome sequencing.
Collapse
Affiliation(s)
- Tijimol Chandy
- MedGenome Labs Pvt. Ltd., Bangalore-560100, Karnataka, India
| |
Collapse
|
2
|
Broxton CN, Kaur P, Lavorato M, Ganesh S, Xiao R, Mathew ND, Nakamaru-Ogiso E, Anderson VE, Falk MJ. Dichloroacetate and thiamine improve survival and mitochondrial stress in a C. elegans model of dihydrolipoamide dehydrogenase deficiency. JCI Insight 2022; 7:e156222. [PMID: 36278487 PMCID: PMC9714793 DOI: 10.1172/jci.insight.156222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/12/2022] [Indexed: 01/16/2023] Open
Abstract
Dihydrolipoamide dehydrogenase (DLD) deficiency is a recessive mitochondrial disorder caused by depletion of DLD from α-ketoacid dehydrogenase complexes. Caenorhabditis elegans animal models of DLD deficiency generated by graded feeding of dld-1(RNAi) revealed that full or partial reduction of DLD-1 expression recapitulated increased pyruvate levels typical of pyruvate dehydrogenase complex deficiency and significantly altered animal survival and health, with reductions in brood size, adult length, and neuromuscular function. DLD-1 deficiency dramatically increased mitochondrial unfolded protein stress response induction and adaptive mitochondrial proliferation. While ATP levels were reduced, respiratory chain enzyme activities and in vivo mitochondrial membrane potential were not significantly altered. DLD-1 depletion directly correlated with the induction of mitochondrial stress and impairment of worm growth and neuromuscular function. The safety and efficacy of dichloroacetate, thiamine, riboflavin, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), l-carnitine, and lipoic acid supplemental therapies empirically used for human DLD disease were objectively evaluated by life span and mitochondrial stress response studies. Only dichloroacetate and thiamine showed individual and synergistic therapeutic benefits. Collectively, these C. elegans dld-1(RNAi) animal model studies demonstrate the translational relevance of preclinical modeling of disease mechanisms and therapeutic candidates. Results suggest that clinical trials are warranted to evaluate the safety and efficacy of dichloroacetate and thiamine in human DLD disease.
Collapse
Affiliation(s)
- Chynna N. Broxton
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Prabhjot Kaur
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Smruthi Ganesh
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Neal D. Mathew
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eiko Nakamaru-Ogiso
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Current Approaches in Molecular Enzymology. Life (Basel) 2022; 12:life12030336. [PMID: 35330087 PMCID: PMC8954395 DOI: 10.3390/life12030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
|
4
|
Increasing Inhibition of the Rat Brain 2-Oxoglutarate Dehydrogenase Decreases Glutathione Redox State, Elevating Anxiety and Perturbing Stress Adaptation. Pharmaceuticals (Basel) 2022; 15:ph15020182. [PMID: 35215295 PMCID: PMC8875720 DOI: 10.3390/ph15020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Specific inhibitors of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) are administered to animals to model the downregulation of the enzyme as observed in neurodegenerative diseases. Comparison of the effects of succinyl phosphonate (SP, 0.02 mmol/kg) and its uncharged precursor, triethyl succinyl phosphonate (TESP, 0.02 and 0.1 mmol/kg) reveals a biphasic response of the rat brain metabolism and physiology to increasing perturbation of OGDH function. At the low (TE)SP dose, glutamate, NAD+, and the activities of dehydrogenases of 2-oxoglutarate and malate increase, followed by their decreases at the high TESP dose. The complementary changes, i.e., an initial decrease followed by growth, are demonstrated by activities of pyruvate dehydrogenase and glutamine synthetase, and levels of oxidized glutathione and citrulline. While most of these indicators return to control levels at the high TESP dose, OGDH activity decreases and oxidized glutathione increases, compared to their control values. The first phase of metabolic perturbations does not cause significant physiological changes, but in the second phase, the ECG parameters and behavior reveal decreased adaptability and increased anxiety. Thus, lower levels of OGDH inhibition are compensated by the rearranged metabolic network, while the increased levels induce a metabolic switch to a lower redox state of the brain, associated with elevated stress of the animals.
Collapse
|