1
|
Volkoff H. The effects of environmental changes on the endocrine regulation of feeding in fishes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220503. [PMID: 38310931 PMCID: PMC10838648 DOI: 10.1098/rstb.2022.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 02/06/2024] Open
Abstract
Fishes are exposed to natural and anthropogenic changes in their environment, which can have major effects on their behaviour and their physiology, including feeding behaviour, food intake and digestive processes. These alterations are owing to the direct action of environmental physico-chemical parameters (i.e. temperature, pH, turbidity) on feeding physiology but can also be a consequence of variations in food availability. Food intake is ultimately regulated by feeding centres of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues such as the gastrointestinal tract. These endocrine signals stimulate or inhibit food intake, and interact with each other to maintain energy homeostasis. Changes in environmental conditions might change feeding habits and rates, thus affecting levels of energy stores, and the expression of endocrine appetite regulators. This review provides an overview of how environmental changes and food availability could affect feeding and these endocrine networks in fishes. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B3X9
| |
Collapse
|
2
|
Brealey JC, Kodama M, Rasmussen JA, Hansen SB, Santos-Bay L, Lecaudey LA, Hansen M, Fjære E, Myrmel LS, Madsen L, Bernhard A, Sveier H, Kristiansen K, Gilbert MTP, Martin MD, Limborg MT. Host-gut microbiota interactions shape parasite infections in farmed Atlantic salmon. mSystems 2024; 9:e0104323. [PMID: 38294254 PMCID: PMC10886447 DOI: 10.1128/msystems.01043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Luisa Santos-Bay
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Laurène A Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Aquaculture Department, SINTEF Ocean, Trondheim, Norway
| | - Martin Hansen
- Department of Environmental Science, Environmental Metabolomics Lab, Aarhus University, Roskilde, Denmark
| | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Norway, Bergen, Norway
| | | | | | - Karsten Kristiansen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Murzina SA, Provotorov DS, Voronin VP, Manoilova DI, Kuritcyn AE, Pekkoeva SN, Nemova NN. Phospholipid Composition of Fingerlings of Atlantic Salmon Salmo salar during Growth and Development in Aquaculture: The Effect of Different Lighting and Feeding Regimes. DOKL BIOCHEM BIOPHYS 2023; 509:51-55. [PMID: 37340292 DOI: 10.1134/s160767292370014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 06/22/2023]
Abstract
The effect of different feeding and lighting regimes (natural and continuous) on the phospholipid composition of Atlantic salmon fingerlings reared in commercial aquaculture in the summer-autumn period in North Ossetia-Alania was studied. Qualitative and quantitative determination of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, lysophosphatidylcholine, sphingomyelin was performed by high-performance liquid chromatography. A decrease (September-November) in the content of the studied phospholipids in fingerlings decreased, which should be considered primarily as a biochemical adaptation of development and preparation of juveniles for the upcoming smoltification. The effects of lighting and feeding regime on phospholipid composition were found mainly in the fish reared under constant lighting and 24/7 feeding and the fish reared under natural light and feeding during daylight hours. However, the observed changes were not specific to a particular experimental group of fish in the framework of this study.
Collapse
Affiliation(s)
- S A Murzina
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia.
| | - D S Provotorov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - V P Voronin
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - D I Manoilova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - A E Kuritcyn
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - S N Pekkoeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| | - N N Nemova
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|