1
|
Sahota JS, Thakur RS, Guleria K, Sambyal V. RAD51 and Infertility: A Review and Case-Control Study. Biochem Genet 2024; 62:1216-1230. [PMID: 37563467 DOI: 10.1007/s10528-023-10469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
RAD51 is a highly conserved recombinase involved in the strand invasion/exchange of double-stranded DNA by homologous single-stranded DNA during homologous recombination repair. Although a majority of existing literature associates RAD51 with the pathogenesis of various types of cancer, recent reports indicate a role of RAD51 in maintenance of fertility. The present study reviews the role of RAD51 and its interacting proteins in spermatogenesis/oogenesis and additionally reports the findings from the molecular genetic screening of RAD51 135 G > C polymorphism in infertile cases and controls. Fifty-nine articles from PubMed and Google Scholar related to the reproductive role of RAD51 were reviewed. For case-control study, the PCR-RFLP method was used to screen the RAD51 135 G > C polymorphism in 201 infertile cases (100 males, 101 females) and 201 age- and gender-matched healthy controls (100 males, 101 females) from Punjab, North-West India. The review of literature shows that RAD51 is indispensable for spermatogenesis and oogenesis in animal models. Reports on the role of RAD51 in human fertility are limited, however it is involved in the pathogenesis of infertility in both males and females. Molecular genetic analyses in the infertile cases and healthy controls showed no statistically significant difference in the genotypic and allelic frequencies for RAD51 135 G > C polymorphism, even after segregation of the cases by type of infertility (primary/secondary). Therefore, the present study concluded that the RAD51 135 G > C polymorphism was neither associated with male nor female infertility in North-West Indians. This is the first report on RAD51 135 G > C polymorphism and infertility.
Collapse
Affiliation(s)
- Jatinder Singh Sahota
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Ranveer Singh Thakur
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Kamlesh Guleria
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India
| | - Vasudha Sambyal
- Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University (GNDU), Amritsar, 143005, Punjab, India.
| |
Collapse
|
2
|
Vishwakarma N, Pareek C, Nair N, Badge A, Bawaskar PA, Kalbande A. SERa-Positive Oocyte Intracytoplasmic Injection and Its Outcome: A Case Report. Cureus 2024; 16:e58836. [PMID: 38784363 PMCID: PMC11112545 DOI: 10.7759/cureus.58836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
This case report describes the use of smooth endoplasmic reticulum aggregates-positive (SERa+) oocytes along with intracytoplasmic sperm injection (ICSI), supplemented with granulocyte-macrophage colony-stimulating factor (GM-CSF), aiming to enhance fertilization rates and reproductive outcomes. A 39-year-old woman, facing primary infertility for the past seven years, received assisted reproductive treatment (ART), which included adding GM-CSF to the culture medium and culture SERa+ oocytes before ICSI. Clinical results, embryo quality, fertilization rates, and other fertility parameters were used to track the patient's progress toward this individualized approach that led to a positive twin pregnancy and healthy twin babies.
Collapse
Affiliation(s)
- Neeraj Vishwakarma
- Clinical Embryology, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Charu Pareek
- Clinical Embryology, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Nancy Nair
- Clinical Embryology, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Ankit Badge
- Microbiology, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Pranita A Bawaskar
- Clinical Embryology, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
| | - Avanti Kalbande
- Obstetrics and Gynaecology, Datta Meghe Institute of Higher Education & Research (Deemed to be University), Wardha, IND
- Obstetrics and Gynaecology, Shalinitai Meghe Hospital & Research Centre, Nagpur, IND
| |
Collapse
|
3
|
Shahmirzadi AS, Shafi H, Shirafkan H, Memariani Z, Gorji N, Moeini R. Effect of Medicago sativa seed powder (Plus vitamin E vs. vitamin E alone) on semen analysis in men with idiopathic infertility: A double blind randomized clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117606. [PMID: 38103848 DOI: 10.1016/j.jep.2023.117606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Different parts of the alfalfa plant (Medicago sativa L.), especially its seeds, have been introduced as a semen quality enhancer in the folk medicine of different regions of Iran as well as in the traditional Persian medicine (PM) books. The seeds of this plant are also used in many combined medicines to treat male infertility in PM. AIM OF THE STUDY This study was designed to investigate the effect of M. sativa seed powder plus vitamin E vs. vitamin E alone on semen analysis of men with idiopathic infertility. MATERIALS AND METHODS In this randomized clinical trial, 60 participants were randomly divided into two groups and then received M. sativa seed powder (6 g daily) or placebo for three months, as add-on to vitamin E (100 U). Results of semen analysis (sperm total count, motility, and morphology as well as semen volume) of these two groups and their changes were compared before and after treatment as the primary outcome. The number of pregnancies after one month and probable side effects were also assessed. RESULTS After 12 weeks, sperm total count changed from 36.2 ± 21.8 × 106/ml to 48.5 ± 19.1 × 106/ml in M. sativa and from 39.5 ± 23.5 × 106/ml to 41.2 ± 20.9 × 106/ml in placebo, percentage of normal morphology changed from 1.8 ± 0.8% to 2.6 ± 1.2 % in M. sativa and from 2.0 ± 0.9% to 2.6 ± 1.2% in placebo and percentage of motile sperm changed from 36.5 ± 11.8 % to 39.7 ± 12.0% in M. sativa and from 39.3 ± 10.1 % to 38.1 ± 12.1% in placebo. The improvements in M. sativa group are significantly better than placebo group (P = 0.00, 0.01 and 0.04, respectively). However, semen volume decreased in both groups, but its changes were not significant. The number of pregnancies was four in the intervention and zero in placebo group. One case with abdominal bloating and one with respiratory allergy withdrew from the intervention group. No other adverse effect was reported. CONCLUSIONS In this study, significant improvement was detected in sperm parameters (except semen volume) of men with idiopathic infertility in M. sativa plus vitamin E group in compare to vitamin E alone after 12 weeks. These findings suggest that the M. sativa, as a complementary therapy, may have a beneficial effect on semen quality. More clinical trials with larger sample size are needed.
Collapse
Affiliation(s)
| | - Hamid Shafi
- Fatemeh Zahra Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reihaneh Moeini
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Okus F, Yuzbasioglu D, Unal F. Molecular docking study of frequently used food additives for selected targets depending on the chromosomal abnormalities they cause. Toxicology 2024; 502:153716. [PMID: 38159899 DOI: 10.1016/j.tox.2023.153716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Food additives (FAs) (flavor enhancers, sweeteners, etc.) protect foods during storage and transportation, making them attractive to consumers. Today, while the desire to access natural foods is increasing, the chemicals added to foods have started to be questioned. In this respect, genotoxicity tests have gained importance. Studies show that some food additives may have genotoxic risks. Previous studies carried out in our laboratory also revealed genotoxic effects of Monopotassium glutamate (MPG), Monosodium glutamate (MSG), Magnesium diglutamate (MDG) as flavor enhancers; Potassium benzoate (PB), Potassium sorbate (PS), Sodium benzoate (SB), Sodium sorbate (SS) as preservatives; Acesulfame potassium (ACE-K), Xylitol (XYL) as sweeteners. In this study, we determined the interactions of these food additives with ATM and p53 proteins, which are activated in the cell due to genotoxic effects, and with DNA by employing the molecular docking method for the first time. Among the food additives, SB (-4.307) for ATM, XYL (-4.629) for p53, and XYL (-4.927) for DNA showed the highest affinity. Therefore, flexible docking (IFD) scores were determined for SB, XYL, and MDG from flavor enhancers. The potential binding modes of the food additives to target molecules' possible inhibition mechanisms were determined by molecular docking. Thus, new information was obtained to show how these additives cause chromosomal abnormalities.
Collapse
Affiliation(s)
- Fatma Okus
- Graduate School of Natural and Applied Sciences, Gazi University, Teknikokullar, Ankara, Türkiye
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Teknikokullar, Ankara, Türkiye.
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Teknikokullar, Ankara, Türkiye
| |
Collapse
|
5
|
Erenpreisa J, Vainshelbaum NM, Lazovska M, Karklins R, Salmina K, Zayakin P, Rumnieks F, Inashkina I, Pjanova D, Erenpreiss J. The Price of Human Evolution: Cancer-Testis Antigens, the Decline in Male Fertility and the Increase in Cancer. Int J Mol Sci 2023; 24:11660. [PMID: 37511419 PMCID: PMC10380301 DOI: 10.3390/ijms241411660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.
Collapse
Affiliation(s)
| | | | - Marija Lazovska
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Roberts Karklins
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Felikss Rumnieks
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Latvian Biomedical Research and Study Centre, Ratsupites 1-1k, LV-1067 Riga, Latvia
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Juris Erenpreiss
- Molecular Genetics Scientific Laboratory, Riga Stradins University, Dzirciema 16, LV-1007 Riga, Latvia
- Clinic iVF-Riga, Zala 1, LV-1010 Riga, Latvia
| |
Collapse
|
6
|
Gershoni M, Braun T, Hauser R, Barda S, Lehavi O, Malcov M, Frumkin T, Kalma Y, Pietrokovski S, Arama E, Kleiman SE. A pathogenic variant in the uncharacterized RNF212B gene results in severe aneuploidy male infertility and repeated IVF failure. HGG ADVANCES 2023; 4:100189. [PMID: 37124137 PMCID: PMC10133878 DOI: 10.1016/j.xhgg.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Quantitative and qualitative spermatogenic impairments are major causes of men's infertility. Although in vitro fertilization (IVF) is effective, some couples persistently fail to conceive. To identify causal variants in patients with severe male infertility factor and repeated IVF failures, we sequenced the exome of two consanguineous family members who underwent several failed IVF cycles and were diagnosed with low sperm count and motility. We identified a rare homozygous nonsense mutation in a previously uncharacterized gene, RNF212B, as the causative variant. Recurrence was identified in another unrelated, infertile patient who also faced repeated failed IVF treatments. scRNA-seq demonstrated meiosis-specific expression of RNF212B. Sequence analysis located a protein domain known to be associated with aneuploidy, which can explain multiple IVF failures. Accordingly, FISH analysis revealed a high aneuploidy rate in the patients' sperm cells and their IVF embryos. Finally, inactivation of the Drosophila orthologs significantly reduced male fertility. Given that members of the evolutionary conserved RNF212 gene family are involved in meiotic recombination and crossover maturation, our findings indicate a critical role of RNF212B in meiosis, genome stability, and in human fertility. Since recombination is completely absent in Drosophila males, our findings may indicate an additional unrelated role for the RNF212-like paralogs in spermatogenesis.
Collapse
Affiliation(s)
- Moran Gershoni
- ARO-The Volcani Center Institute of Animal Science, Bet Dagan, Israel
- Corresponding author
| | - Tslil Braun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hauser
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimi Barda
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Lehavi
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mira Malcov
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tsvia Frumkin
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Sandra E. Kleiman
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Corresponding author
| |
Collapse
|
7
|
Whole Exome Sequencing and In Silico Analysis of Human Sertoli in Patients with Non-Obstructive Azoospermia. Int J Mol Sci 2022; 23:ijms232012570. [PMID: 36293429 PMCID: PMC9604420 DOI: 10.3390/ijms232012570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a serious cause of male infertility. The Sertoli cell responds to androgens and takes on roles supporting spermatogenesis, which may cause infertility. This work aims to enhance the genetic diagnosis of NOA via the discovery of new and hub genes implicated in human NOA and to better assess the odds of successful sperm extraction according to the individual’s genotype. Whole exome sequencing (WES) was done on three NOA patients to find key genes involved in NOA. We evaluated genome-wide transcripts (about 50,000 transcripts) by microarray between the Sertoli of non-obstructive azoospermia and normal cells. The microarray analysis of three human cases with different non-obstructive azoospermia revealed that 32 genes were upregulated, and the expressions of 113 genes were downregulated versus the normal case. For this purpose, Enrich Shiny GO, STRING, and Cytoscape online evaluations were applied to predict the functional and molecular interactions of proteins and then recognize the master pathways. The functional enrichment analysis demonstrated that the biological process (BP) terms “inositol lipid-mediated signaling”, “positive regulation of transcription by RNA polymerase II”, and “positive regulation of DNA-templated transcription” significantly changed in upregulated differentially expressed genes (DEGs). The BP investigation of downregulated DEGs highlighted “mitotic cytokinesis”, “regulation of protein-containing complex assembly”, “cytoskeleton-dependent cytokinesis”, and the “peptide metabolic process”. Overrepresented molecular function (MF) terms in upregulated DEGs included “ubiquitin-specific protease binding”, “protease binding”, “phosphatidylinositol trisphosphate phosphatase activity”, and “clathrin light chain binding”. Interestingly, the MF analysis of the downregulated DEGs revealed overexpression in “ATPase inhibitor activity”, “glutathione transferase activity”, and “ATPase regulator activity”. Our findings suggest that these genes and their interacting hub proteins could help determine the pathophysiologies of germ cell abnormalities and infertility.
Collapse
|