1
|
Morsali MA, Shekaari H, Golmohammadi B. Hydration behavior of L-proline in the presence of mono, bis, tris-(2-hydroxyethyl) ammonium acetate protic ionic liquids: Thermophysical properties. Sci Rep 2024; 14:27229. [PMID: 39516508 PMCID: PMC11549441 DOI: 10.1038/s41598-024-77341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The hydration behavior of amino acids, essential for biological macromolecules, is influenced by ammonium biomaterials. The protic ionic liquids (PILs) are gaining attention in the food and pharmaceutical industries due to their nontoxicity and adjustable properties. Thus, study of the amino acids, such as L-proline, in the presence of PILs is crucial for understanding their hydration behavior. In this work, the effect of PILs, including mono, bis, tris (2-hydroxyethyl)ammonium acetate protic ionic liquids that might be naturally produced in human body, on L-proline hydration behavior was studied using COSMO calculations and thermophysical measurements. Measurements were the density, speed of sound, viscosity, and refractive index data of the solutions (L-proline + PILs + water) at various PIL concentrations at temperatures (298.15 to 318.15) K and under atmospheric pressure. The study indicates L-proline has weaker interactions with water compared to PILs ([2-HEA][Ac], [bis-2-HEA][Ac], and [tris-2-HEA][Ac]) due to its compact structure and lower negative dielectric energy. PILs interact more strongly with water through hydrogen bonding. Increasing temperature affects L-proline's hydration layer, releasing more water molecules compared to PIL solutions. This effect is more pronounced with [tris-2-HEA][Ac], likely due to its larger size and complex structure. While L-proline promotes an ordered water structure, PILs can disrupt this by rearranging water molecules and forming their own hydrogen bonds.
Collapse
Affiliation(s)
- Mohammad Amin Morsali
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hemayat Shekaari
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Behrang Golmohammadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Venturi S, Rossi B, Tortora M, Torre R, Lapini A, Foggi P, Paolantoni M, Catalini S. Amyloidogenic and non-amyloidogenic molten globule conformation of β-lactoglobulin in self-crowded regime. Int J Biol Macromol 2023; 242:124621. [PMID: 37141974 DOI: 10.1016/j.ijbiomac.2023.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Molecular insights on the β-lactoglobulin thermal unfolding and aggregation are derived from FTIR and UV Resonance Raman (UVRR) investigations. We propose an in situ and in real-time approach that thanks to the identification of specific spectroscopic markers can distinguish the two different unfolding pathways pursued by β-lactoglobulin during the conformational transition from the folded to the molten globule state, as triggered by the pH conditions. For both the investigated pH values (1.4 and 7.5) the greatest conformational variation of β-lactoglobulin occurs at 80 °C and a high degree of structural reversibility after cooling is observed. In acidic condition β-lactoglobulin exposes to the solvent its hydrophobic moieties in a much higher extent than in neutral solution, resulting on a highly open conformation. Moving from the diluted to the self-crowded regime, the solution pH and consequently the different molten globule conformation select the amyloid or non-amyloid aggregation pathway. At acidic condition the amyloid aggregates form during the heating cycle leading to the formation of transparent hydrogel. On the contrary, in neutral condition the amyloid aggregates never form. Information on the secondary structure conformational change of β-lactoglobulin and the formation of amyloid aggregates are obtained by FTIR spectroscopy and are related to the information of the structural changes localized around the aromatic amino acid sites by UVRR technique. Our results highlight a strong involvement of the chain portions where tryptophan is located on the formation of amyloid aggregates.
Collapse
Affiliation(s)
- Sara Venturi
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Mariagrazia Tortora
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy; AREA SCIENCE PARK, Padriciano, 99, 34149 Trieste, Italy
| | - Renato Torre
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Fisica ed Astronomia, Università di Firenze, Via G. Sansone, 1, 50019 Sesto Fiorentino, Italy
| | - Andrea Lapini
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124 Parma, PR, Italy
| | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy; CNR-INO, Consiglio Nazionale Delle Ricerche - Istituto Nazionale di Ottica, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy.
| | - Sara Catalini
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; CNR-INO, Consiglio Nazionale Delle Ricerche - Istituto Nazionale di Ottica, Largo Fermi 6, 50125 Florence, Italy; Dipartimento di Fisica e Geologia, Università di Perugia, 06123, Via Pascoli, Perugia, Italy.
| |
Collapse
|
3
|
Gómez S, Bottari C, Egidi F, Giovannini T, Rossi B, Cappelli C. Amide Spectral Fingerprints are Hydrogen Bonding-Mediated. J Phys Chem Lett 2022; 13:6200-6207. [PMID: 35770492 PMCID: PMC9272440 DOI: 10.1021/acs.jpclett.2c01277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The origin of the peculiar amide spectral features of proteins in aqueous solution is investigated, by exploiting a combined theoretical and experimental approach to study UV Resonance Raman (RR) spectra of peptide molecular models, namely N-acetylglycine-N-methylamide (NAGMA) and N-acetylalanine-N-methylamide (NALMA). UVRR spectra are recorded by tuning Synchrotron Radiation at several excitation wavelengths and modeled by using a recently developed multiscale protocol based on a polarizable QM/MM approach. Thanks to the unparalleled agreement between theory and experiment, we demonstrate that specific hydrogen bond interactions, which dominate hydration dynamics around these solutes, play a crucial role in the selective enhancement of amide signals. These results further argue the capability of vibrational spectroscopy methods as valuable tools for refined structural analysis of peptides and proteins in aqueous solution.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Cettina Bottari
- Elettra
Sincrotrone Trieste S.C.p.A., S. S. 14 Km 163.5 in Area Science Park, I-34149, Trieste, Italy
| | - Franco Egidi
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Tommaso Giovannini
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Barbara Rossi
- Elettra
Sincrotrone Trieste S.C.p.A., S. S. 14 Km 163.5 in Area Science Park, I-34149, Trieste, Italy
- Department
of Physics, University of Trento, via Sommarive 14, I-38123 Povo, Trento, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| |
Collapse
|