1
|
Yu Y, Zhang S, Duan C, Crouch C, Suo J, Tang X, Liu X, Liu J, Bruton B, Tarpey I, Suo X. Developing efficient strategies for localizing the enhanced yellow fluorescent protein subcellularly in transgenic Eimeria parasites. Sci Rep 2024; 14:4851. [PMID: 38418588 PMCID: PMC10902363 DOI: 10.1038/s41598-024-55569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/25/2024] [Indexed: 03/01/2024] Open
Abstract
Eimeria species serve as promising eukaryotic vaccine vectors. And that the location of heterologous antigens in the subcellular components of genetically modified Eimeria may determine the magnitude and type of immune responses. Therefore, our study aimed to target a heterologous fluorescent protein to the cell surface or microneme, two locations where are more effective in inducing protective immunity, of Eimeria tenella and E. acervulina sporozoites. We used an enhanced yellow fluorescent protein (EYFP) as a tagging biomarker, fusing variously with some localization or whole sequences of compartmental proteins for targeting. After acquiring stable transgenic Eimeria populations, we observed EYFP expressing in expected locations with certain strategies. That is, EYFP successfully localized to the surface when it was fused between signal peptides and mature products of surface antigen 1 (SAG1). Furthermore, EYFP was efficiently targeted to the apical end, an optimal location for secretory organelle known as the microneme, when fused to the C terminus of microneme protein 2. Unexpectedly, EYFP exhibited dominantly in the apical end with only weak expression on the surface of the transgenic sporozoites when the parasites were transfected with plasmid with EYFP fused between signal peptides and mature products of E. tenella SAG 13. These strategies worked in both E. tenella and E. acervulina, laying a solid foundation for studying E. tenella and E. acervulina-based live vaccines that can be further tailored to the inclusion of cargo immunogens from other pathogens.
Collapse
Affiliation(s)
- Ying Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chunhui Duan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Colin Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Beth Bruton
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Ian Tarpey
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Identification of Toxoplasma gondii adhesins through a machine learning approach. Exp Parasitol 2022; 238:108261. [PMID: 35460696 DOI: 10.1016/j.exppara.2022.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii, as other apicomplexa, employs adhesins transmembrane proteins for binding and invasion to host cells. Search and characterization of adhesins is pivotal in understanding Apicomplexa invasion mechanisms and targeting new druggable candidates. This work developed a machine learning software called ApiPredictor UniQE V2.0, based on two approaches: support vector machines and multilayer perceptron, to predict adhesins proteins from amino acid sequences. By using ApiPredictor UniQE V2.0, five SAG-Related Sequences (SRSs) were identified within the Toxoplasma gondii proteome. One of those candidates, TgSRS12B, was cloned in plasmid pEXP5-CT/TOPO and expressed in E. coli BL21 DE3. The resulting recombinant protein was purified via affinity chromatography. Co-precipitation assays in CaCo and Muller cells showed interactions between TgSRS12B-His-tagged and the membrane fractions from both human cell lines. In conclusion, we demonstrated that ApiPredictor UniQE V2.0, a bioinformatic free software, was able to identify TgSRS12B as a new adhesin protein.
Collapse
|