1
|
Braat J, Havaux M. The SIAMESE family of cell-cycle inhibitors in the response of plants to environmental stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1362460. [PMID: 38434440 PMCID: PMC10904545 DOI: 10.3389/fpls.2024.1362460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Environmental abiotic constraints are known to reduce plant growth. This effect is largely due to the inhibition of cell division in the leaf and root meristems caused by perturbations of the cell cycle machinery. Progression of the cell cycle is regulated by CDK kinases whose phosphorylation activities are dependent on cyclin proteins. Recent results have emphasized the role of inhibitors of the cyclin-CDK complexes in the impairment of the cell cycle and the resulting growth inhibition under environmental constraints. Those cyclin-CDK inhibitors (CKIs) include the KRP and SIAMESE families of proteins. This review presents the current knowledge on how CKIs respond to environmental changes and on the role played by one subclass of CKIs, the SIAMESE RELATED proteins (SMRs), in the tolerance of plants to abiotic stresses. The SMRs could play a central role in adjusting the balance between growth and stress defenses in plants exposed to environmental stresses.
Collapse
Affiliation(s)
| | - Michel Havaux
- Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille, Saint-Paul-lez-Durance, France
| |
Collapse
|
2
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
3
|
Takatsuka H, Nomoto Y, Yamada K, Mineta K, Breuer C, Ishida T, Yamagami A, Sugimoto K, Nakano T, Ito M. MYB3R-SCL28-SMR module with a role in cell size control negatively regulates G2 progression in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2023; 18:2153209. [PMID: 36576149 PMCID: PMC10761098 DOI: 10.1080/15592324.2022.2153209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Cell size control is one of the prerequisites for plant growth and development. Recently, a GRAS family transcription factor, SCARECROW-LIKE28 (SCL28), was identified as a critical regulator for both mitotic and postmitotic cell-size control. Here, we show that SCL28 is specifically expressed in proliferating cells and exerts its function to delay G2 progression during mitotic cell cycle in Arabidopsis thaliana. Overexpression of SCL28 provokes a significant enlargement of cells in various organs and tissues, such as leaves, flowers and seeds, to different extents depending on the type of cells. The increased cell size is most likely due to a delayed G2 progression and accelerated onset of endoreplication, an atypical cell cycle repeating DNA replication without cytokinesis or mitosis. Unlike DWARF AND LOW-TILLERING, a rice ortholog of SCL28, SCL28 may not have a role in brassinosteroid (BR) signaling because sensitivity against brassinazole, a BR biosynthesis inhibitor, was not dramatically altered in scl28 mutant and SCL28-overexpressing plants. Collectively, our findings strengthen a recently proposed model of cell size control by SCL28 and suggest the presence of diversified evolutionary mechanisms for the regulation and action of SCL28.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kesuke Yamada
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Keito Mineta
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Christian Breuer
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Takashi Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
4
|
Mineta K, Hirota J, Yamada K, Itoh T, Chen P, Iwakawa H, Takatsuka H, Nomoto Y, Ito M. MYB3R-mediated and cell cycle-dependent transcriptional regulation of a tobacco ortholog of SCARECROW-LIKE28 in synchronized cultures of BY-2 cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:353-359. [PMID: 38434109 PMCID: PMC10905365 DOI: 10.5511/plantbiotechnology.23.0515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/15/2023] [Indexed: 03/05/2024]
Abstract
Although it is well known that hierarchical transcriptional networks are essential for various aspects of plant development and environmental response, little has been investigated about whether and how they also regulate the plant cell cycle. Recent studies on cell cycle regulation in Arabidopsis thaliana identified SCARECROW-LIKE28 (SCL28), a GRAS-type transcription factor, that constitutes a hierarchical transcriptional pathway comprised of MYB3R, SCL28 and SIAMESE-RELATED (SMR). In this pathway, MYB3R family proteins regulate the G2/M-specific transcription of the SCL28 gene, of which products, in turn, positively regulate the transcription of SMR genes encoding a group of plant-specific inhibitor proteins of cyclin-dependent kinases. However, this pathway with a role in cell cycle inhibition is solely demonstrated in A. thaliana, thus leaving open the question of whether and to what extent this pathway is evolutionarily conserved in plants. In this study, we conducted differential display RT-PCR on synchronized Nicotiana tabacum (tobacco) BY-2 cells and identified several M-phase-specific cDNA clones, one of which turned out to be a tobacco ortholog of SCL28 and was designated NtSCL28. We showed that NtSCL28 is expressed specifically during G2/M and early G1 in the synchronized cultures of BY-2 cells. NtSCL28 contains MYB3R-binding promoter elements, so-called mitosis-specific activator elements, and is upregulated by a hyperactive form of NtmybA2, one of the MYB3R proteins from tobacco. Our study indicated that a part of the hierarchical pathway identified in A. thaliana is equally operating in tobacco cells, suggesting the conservation of this pathway across different families in evolution of angiosperm.
Collapse
Affiliation(s)
- Keito Mineta
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Junya Hirota
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kesuke Yamada
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hidekazu Iwakawa
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
5
|
Goldy C, Barrera V, Taylor I, Buchensky C, Vena R, Benfey PN, De Veylder L, Rodriguez RE. SCARECROW-LIKE28 modulates organ growth in Arabidopsis by controlling mitotic cell cycle exit, endoreplication, and cell expansion dynamics. THE NEW PHYTOLOGIST 2023; 237:1652-1666. [PMID: 36451535 DOI: 10.1111/nph.18650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.
Collapse
Affiliation(s)
- Camila Goldy
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Virginia Barrera
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Isaiah Taylor
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Celeste Buchensky
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodrigo Vena
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| |
Collapse
|