1
|
Liu Z, Hou L, Yan J, Ahmad P, Qin M, Li R, El-Sheikh MA, Deshmukh R, Sudhakaran SS, Ali B, Zhang L, Yang L, Liu P. Aquaporin mediated silicon-enhanced root hydraulic conductance is benefit to cadmium dilution in tobacco seedlings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134905. [PMID: 38941827 DOI: 10.1016/j.jhazmat.2024.134905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Numerous studies shown that silicon (Si) enhanced plants' resistance to cadmium (Cd). Most studies primarily focused on investigating the impact of Si on Cd accumulation. However, there is a lack of how Si enhanced Cd resistance through regulation of water balance. The study demonstrated that Si had a greater impact on increasing fresh weight compared to dry weight under Cd stress. This effect was mainly attributed to Si enhanced plant relative water content (RWC). Plant water content depends on the dynamic balance of water loss and water uptake. Our findings revealed that Si increased transpiration rate and stomatal conductance, leading to higher water loss. This, in turn, negatively impacted water content. The increased water content caused by Si could ascribe to improve root water uptake. The Si treatment significantly increased root hydraulic conductance (Lpr) by 131 % under Cd stress. This enhancement was attributed to Si upregulation genes expression of NtPIP1;1, NtPIP1;2, NtPIP1;3, and NtPIP2;1. Through meticulously designed scientific experiments, this study showed that Si enhanced AQP activity, leading to increased water content that diluted Cd concentration and ultimately improved plant Cd resistance. These findings offered fresh insights into the role of Si in bolstering plant resistance to Cd.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Jammu and Kashmir, India
| | - Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Sreeja S Sudhakaran
- Department of Biotechnology, Central University of Haryana, Mahendragarh, India
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim yar Khan 64200, Pakistan
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271000, China.
| |
Collapse
|
2
|
Walczak-Skierska J, Krakowska-Sieprawska A, Monedeiro F, Złoch M, Pomastowski P, Cichorek M, Olszewski J, Głowacka K, Gużewska G, Szultka-Młyńska M. Silicon's Influence on Polyphenol and Flavonoid Profiles in Pea ( Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS OMEGA 2024; 9:14899-14910. [PMID: 38585133 PMCID: PMC10993280 DOI: 10.1021/acsomega.3c08327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
The current study aimed to investigate the impact of silicon (Si) supplementation in the form of Na2SiO3 on the metabolome of peas under normal conditions and following exposure to cadmium (Cd) stress. Si is known for its ability to enhance stress tolerance in various plant species, including the mitigation of heavy metal toxicity. Cd, a significant contaminant, poses risks to both human health and the environment. The study focused on analyzing the levels of bioactive compounds in different plant parts, including the shoot, root, and pod, to understand the influence of Si supplementation on their biosynthesis. Metabolomic analysis of pea samples was conducted using a targeted HPLC/MS approach, enabling the identification of 15 metabolites comprising 9 flavonoids and 6 phenolic acids. Among the detected compounds, flavonoids, such as flavon and quercetin, along with phenolic acids, including chlorogenic acid and salicylic acid, were found in significant quantities. The study compared Si supplementation at concentrations of 1 and 2 mM, as well as Cd stress conditions, to evaluate their effects on the metabolomic profile. Additionally, the study explored the extraction efficiency of three different methods: accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and maceration (MAC). The results revealed that SFE was the most efficient method for extracting polyphenolic compounds from the pea samples. Moreover, the study investigated the stability of polyphenolic compounds under different pH conditions, ranging from 4.0 to 6.0, providing insights into the influence of the pH on the extraction and stability of bioactive compounds.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Aneta Krakowska-Sieprawska
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Paweł Pomastowski
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, Torun 87-100, Poland
| | - Mateusz Cichorek
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Jacek Olszewski
- Experimental
Education Unit, University of Warmia and
Mazury in Olsztyn, Plac Łódzki 1, Olsztyn 10-721, Poland
| | - Katarzyna Głowacka
- Department
of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, Olsztyn 10-719, Poland
| | - Gaja Gużewska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| | - Małgorzata Szultka-Młyńska
- Department
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, Torun 87-100, Poland
| |
Collapse
|
3
|
Mohammadi H, Kazemi Z, Aghaee A, Hazrati S, Golzari Dehno R, Ghorbanpour M. Unraveling the influence of TiO 2 nanoparticles on growth, physiological and phytochemical characteristics of Mentha piperita L. in cadmium-contaminated soil. Sci Rep 2023; 13:22280. [PMID: 38097718 PMCID: PMC10721648 DOI: 10.1038/s41598-023-49666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Among the metals contaminants, cadmium (Cd) is one of the most toxic elements in cultivated soils, causing loss of yield and productivity in plants. Recently, nanomaterials have been shown to mitigate the negative consequences of environmental stresses in different plants. However, little is known about foliar application of titanium dioxide nanoparticles (TiO2 NPs) to alleviate Cd stress in medicinal plants, and their dual interactions on essential oil production. The objective of this study was to investigate the effects of foliar-applied TiO2 NPs on growth, Cd uptake, chlorophyll fluorescence, photosynthetic pigments, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, total phenols, anthocyanins, flavonoids, antioxidant enzymes (SOD, CAT and POD) activity and essential oil content of Mentha piperita L. (peppermint) under Cd stress. For this purpose, plants were grown in Cd-contaminated (0, 20, 40, and 60 mg L-1) soil, and different concentrations of TiO2 NPs (0, 75, and 150 mg L-1) were foliar sprayed at three times after full establishment until the beginning of flowering. Exposure to TiO2 NPs significantly (P < 0.01) increased shoot dry weight (37.8%) and the number of lateral branches (59.4%) and decreased Cd uptake in plant tissues as compared to the control. Application of TiO2 NPs increased the content of plastid pigments, and the ratio Fv/Fm (13.4%) as compared to the control. Additionally, TiO2 NPs reduced the stress markers, MDA and H2O2 contents and enhanced the activity of the phenylalanine ammonia-lyase (PAL) enzyme (60.5%), total phenols (56.1%), anthocyanins (42.6%), flavonoids (25.5%), and essential oil content (52.3%) in Cd-stressed peppermint compared to the control. The results also demonstrated that foliar spray of TiO2 NPs effectively improved the growth and chlorophyll fluorescence parameters and reduced Cd accumulation in peppermint, which was mainly attributed to the reduction of oxidative burst and enhancement of the enzymatic (SOD, CAT, and POD) antioxidant defense system due to the uptake of NPs. The findings provide insights into the regulatory mechanism of TiO2 NPs on peppermint plants growth, physiology and secondary metabolites production in Cd-contaminated soil.
Collapse
Affiliation(s)
- Hamid Mohammadi
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Zahra Kazemi
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | - Saeid Hazrati
- Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Rosa Golzari Dehno
- Department of Agriculture, Chalus Branch, Islamic Azad University, Chalus, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
4
|
Cruzado-Tafur E, Orzoł A, Gołębiowski A, Pomastowski P, Cichorek M, Olszewski J, Walczak-Skierska J, Buszewski B, Szultka-Młyńska M, Głowacka K. Metal tolerance and Cd phytoremoval ability in Pisum sativum grown in spiked nutrient solution. JOURNAL OF PLANT RESEARCH 2023; 136:931-945. [PMID: 37676608 PMCID: PMC10587304 DOI: 10.1007/s10265-023-01493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
In the presented study, the effects of cadmium (Cd) stress and silicon (Si) supplementation on the pea plant (Pisum sativum L.) were investigated. The tendency to accumulate cadmium in the relevant morphological parts of the plant (roots and shoots respectively)-bioaccumulation, the transfer of this element in the plant (translocation) and the physiological parameters of the plant through indicators of oxidative stress were determined. Model studies were carried out at pH values 6.0 and 5.0 plant growth conditions in the hydroponic cultivation. It was shown that Cd accumulates mostly in plant roots at both pH levels. However, the Cd content is higher in the plants grown at lower pH. The Cd translocation factor was below 1.0, which indicates that the pea is an excluder plant. The contamination of the plant growth environment with Cd causes the increased antioxidant stress by the growing parameters of the total phenolic content (TPC), polyphenol oxidase activity (PPO), the malondialdehyde (MDA) and lipid peroxidation (LP). The results obtained showed that the supplementation with Si reduces these parameters, thus lowering the oxidative stress of the plant. Moreover, supplementation with Si leads to a lower content of Cd in the roots and reduces bioaccumulation of Cd in shoots and roots of pea plants.
Collapse
Affiliation(s)
- Edith Cruzado-Tafur
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Aleksandra Orzoł
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Adrian Gołębiowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Mateusz Cichorek
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland
| | - Jacek Olszewski
- Experimental Education Unit, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Torun, Poland
| | - Katarzyna Głowacka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1a, 10-719, Olsztyn, Poland.
| |
Collapse
|
5
|
Hou L, Ji S, Zhang Y, Wu X, Zhang L, Liu P. The mechanism of silicon on alleviating cadmium toxicity in plants: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1141138. [PMID: 37035070 PMCID: PMC10076724 DOI: 10.3389/fpls.2023.1141138] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Cadmium is one of the most toxic heavy metal elements that seriously threaten food safety and agricultural production worldwide. Because of its high solubility, cadmium can easily enter plants, inhibiting plant growth and reducing crop yield. Therefore, finding a way to alleviate the inhibitory effects of cadmium on plant growth is critical. Silicon, the second most abundant element in the Earth's crust, has been widely reported to promote plant growth and alleviate cadmium toxicity. This review summarizes the recent progress made to elucidate how silicon mitigates cadmium toxicity in plants. We describe the role of silicon in reducing cadmium uptake and transport, improving plant mineral nutrient supply, regulating antioxidant systems and optimizing plant architecture. We also summarize in detail the regulation of plant water balance by silicon, and the role of this phenomenon in enhancing plant resistance to cadmium toxicity. An in-depth analysis of literature has been conducted to identify the current problems related to cadmium toxicity and to propose future research directions.
Collapse
|
6
|
Saman RU, Shahbaz M, Maqsood MF, Lili N, Zulfiqar U, Haider FU, Naz N, Shahzad B. Foliar Application of Ethylenediamine Tetraacetic Acid (EDTA) Improves the Growth and Yield of Brown Mustard ( Brassica juncea) by Modulating Photosynthetic Pigments, Antioxidant Defense, and Osmolyte Production under Lead (Pb) Stress. PLANTS (BASEL, SWITZERLAND) 2022; 12:115. [PMID: 36616244 PMCID: PMC9824091 DOI: 10.3390/plants12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb) toxicity imposes several morphological and biochemical changes in plants grown in Pb-contaminated soils. Application of ethylenediamine tetraacetic acid (EDTA) in mitigating heavy metal stress has already been studied. However, the role of EDTA in mitigating heavy metal stress, especially in oilseed crops, is less known. Therefore, the study aimed to explore the potential effect of foliar application of 2.5 mM EDTA on two different varieties of Brassica juncea L., i.e., Faisal (V1) and Rohi (V2), with and without 0.5 mM Lead acetate [Pb(C2H3O2)2] treatment. Statistical analysis revealed that Pb stress was harmful to the plant. It caused a considerable decrease in the overall biomass (56.2%), shoot and root length (21%), yield attributes (20.16%), chlorophyll content (35.3%), total soluble proteins (12.9%), and calcium (61.7%) and potassium (40.9%) content of the plants as compared to the control plants. However, the foliar application of EDTA alleviated the adverse effects of Pb in both varieties. EDTA application improved the morphological attributes (67%), yield (29%), and photosynthetic pigments (80%). Positive variations in the antioxidant activity, ROS, and contents of total free amino acid, anthocyanin, flavonoids, and ascorbic acid, even under Pb stress, were prominent. EDTA application further improved their presence in the brown mustard verifying it as a more stress-resistant plant. It was deduced that the application of EDTA had significantly redeemed the adverse effects of Pb, leaving room for further experimentation to avoid Pb toxification in the mustard oil and the food chain.
Collapse
Affiliation(s)
- Rafia Urooj Saman
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Nian Lili
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|