1
|
Shi C, Liu H, Fu T, Li Y, Zhao H, Liu F. Global hotspots and trends of nutritional supplements for sick populations from 2000 to 2024. Front Nutr 2025; 12:1497207. [PMID: 39935585 PMCID: PMC11810749 DOI: 10.3389/fnut.2025.1497207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Background Nutritional supplements (NS) can help patients by providing various nutrients such as essential vitamins and minerals, helping to prevent and recover from diseases. This study provides a broad overview of the field of NS for sick people through bibliometrics and visualization analysis, to analyze the status and development dynamics, explore the popular research questions and directions, and reveal the development trends and research frontiers. Methods We searched the Web of Science Core Collection databases for literature related to NS for diseased populations from 2000 to 2024. A total of 1,550 articles were included in the analysis after screening. Analyses performed using CiteSpace and VOSviewer software. Results The field of NS for the sick population has witnessed an overall rapid growth in the number of publications, which is divided into three phases: 2000-2008 was the exploratory phase, 2009-2017 was the sustained development phase, and 2018 to date is in the rapid development phase. Research focuses on dietary supplementation, oxidative stress, in vitro injections, development, antioxidant activity, double-blind trials, lipid supplements, functional foods, the health of diseased populations, and the risks of NS. Conclusion Different supplements each possess unique benefits and should be chosen according to the type of disease to ensure they contain the corresponding nutrients. Vitamin supplements are widely mentioned among patient populations across the globe. Future trends may focus on applying nutritional supplements in gut microbiota and bioactive compounds. Researchers frequently mention the application of NS in women, infants, and children. It should continue to be monitored and optimized in the future to enhance its therapeutic effects, thereby accelerating patients' recovery and improving their quality of life.
Collapse
Affiliation(s)
- Chaofan Shi
- College of Physical Education, Henan University, Kaifeng, Henan, China
| | - Haitao Liu
- College of Physical Education, Henan University, Kaifeng, Henan, China
- Research Center of Sports Reform and Development, Henan University, Kaifeng, Henan, China
- Institute of Physical Fitness and Health, Henan University, Kaifeng, Henan, China
| | - Te Fu
- College of Physical Education, Henan University, Kaifeng, Henan, China
| | - Yuanquan Li
- College of Physical Education, Henan University, Kaifeng, Henan, China
| | - Haichang Zhao
- College of Physical Education, Henan University, Kaifeng, Henan, China
| | - Feiyue Liu
- College of Physical Education, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Pei K, Georgi M, Hill D, Lam CFJ, Wei W, Cordeiro MF. Review: Neuroprotective Nanocarriers in Glaucoma. Pharmaceuticals (Basel) 2024; 17:1190. [PMID: 39338350 PMCID: PMC11435059 DOI: 10.3390/ph17091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Glaucoma stands as a primary cause of irreversible blindness globally, characterized by the progressive dysfunction and loss of retinal ganglion cells (RGCs). While current treatments primarily focus on controlling intraocular pressure (IOP), many patients continue to experience vision loss. Therefore, the research focus has shifted to therapeutic targets aimed at preventing or delaying RGC death and optic nerve degeneration to slow or halt disease progression. Traditional ocular drug administration, such as eye drops or oral medications, face significant challenges due to the eye's unique structural and physiological barriers, which limit effective drug delivery. Invasive methods like intravitreal injections can cause side effects such as bleeding, inflammation, and infection, making non-invasive delivery methods with high bioavailability very desirable. Nanotechnology presents a promising approach to addressing these limitations in glaucoma treatment. This review summarizes current approaches involving neuroprotective drugs combined with nanocarriers, and their impact for future use.
Collapse
Affiliation(s)
- Kun Pei
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Maria Georgi
- St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
| | - Daniel Hill
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Wei Wei
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Surgery & Cancer, Imperial College London, London SW7 5NG, UK
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
- Western Eye Hospital, London NW1 5QH, UK
| |
Collapse
|
4
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Sugasini D, Park JC, McAnany JJ, Kim TH, Ma G, Yao X, Antharavally B, Oroskar A, Oroskar AA, Layden BT, Subbaiah PV. Improvement of retinal function in Alzheimer disease-associated retinopathy by dietary lysophosphatidylcholine-EPA/DHA. Sci Rep 2023; 13:9179. [PMID: 37280266 PMCID: PMC10244360 DOI: 10.1038/s41598-023-36268-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent cause of dementia in the elderly. Although impaired cognition and memory are the most prominent features of AD, abnormalities in visual functions often precede them, and are increasingly being used as diagnostic and prognostic markers for the disease. Retina contains the highest concentration of the essential fatty acid docosahexaenoic acid (DHA) in the body, and its deficiency is associated with several retinal diseases including diabetic retinopathy and age related macular degeneration. In this study, we tested the hypothesis that enriching retinal DHA through a novel dietary approach could ameliorate symptoms of retinopathy in 5XFAD mice, a widely employed model of AD. The results show that 5XFAD mice have significantly lower retinal DHA compared to their wild type littermates, and feeding the lysophosphatidylcholine (LPC) form of DHA and eicosapentaenoic acid (EPA) rapidly normalizes the DHA levels, and increases retinal EPA by several-fold. On the other hand, feeding similar amounts of DHA and EPA in the form of triacylglycerol had only modest effects on retinal DHA and EPA. Electroretinography measurements after 2 months of feeding the experimental diets showed a significant improvement in a-wave and b-wave functions by the LPC-diet, whereas the TAG-diet had only a modest benefit. Retinal amyloid β levels were decreased by about 50% by the LPC-DHA/EPA diet, and by about 17% with the TAG-DHA/EPA diet. These results show that enriching retinal DHA and EPA through dietary LPC could potentially improve visual abnormalities associated with AD.
Collapse
Affiliation(s)
- Dhavamani Sugasini
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois, Chicago, IL, 60612, USA.
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, 60612, USA
| | - J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, 60612, USA
| | - Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
| | - Guangying Ma
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
| | - Xincheng Yao
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
| | | | - Anil Oroskar
- Orochem Technologies, Inc, Naperville, IL, 60563, USA
| | | | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois, Chicago, IL, 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - Papasani V Subbaiah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois, Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|