1
|
Ingolfsland EC, Molomjamts M, Foster A, Lee H, Roehrich H, Morikuni A, Qureishy H, Tran PV, McLoon LK, Georgieff MK. Phlebotomy-induced anemia reduces oxygen-induced retinopathy severity and dampens retinal developmental transcriptomic pathways in rats. Pediatr Res 2024:10.1038/s41390-024-03477-w. [PMID: 39379628 DOI: 10.1038/s41390-024-03477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Phlebotomy-induced-anemia (PIA), which induces tissue hypoxia and angiogenesis, occurs universally among infants at risk for severe retinopathy of prematurity (ROP). We hypothesized that PIA exacerbates pathologic retinal neovascularization in ROP. METHODS We induced PIA to a hematocrit of 18% among rats undergoing the established 50/10 oxygen-induced retinopathy (OIR) model. Rats were euthanized at P15 and P20, during the avascular and neovascular phases of OIR, respectively. Retinal vascular morphometry, cytokine/chemokine concentrations, transcriptomes, and mRNA expression of angiogenic and iron-deficiency markers were compared to non-PIA controls. RESULTS In OIR, PIA decreased percent avascular area at P15 by 35%, percent neovascular area at P20 by 42%, and select pro-inflammatory cytokine/chemokine concentrations at both time points. At P20, PIA increased mRNA expression of angiopoietin 2/ vascular endothelial growth factor-A 2-fold and transferrin and transferrin receptor 5-fold. RNA sequencing showed dampened pathways of angiogenesis, inflammation, and neural development in anemic OIR females. CONCLUSION Contrary to our hypothesis, PIA decreased OIR severity and retinal cytokine and chemokine levels and dampened transcriptomic pathways central to retinal vascular and neural development in neonatal rats. These data suggest PIA provides a protective effect from OIR. Further investigation into the functional effect of these molecular changes is warranted. IMPACT This is the first preclinical study to investigate the impact of neonatal anemia on oxygen-induced retinopathy (OIR) outcomes. This study adds to the literature that anemia decreases neovascularization, decreases cytokine and chemokine levels, and dampens angiogenic and neural transcriptomic pathways in the rat 50/10 OIR model. The study identifies a sex-specific transcriptomic response to anemia in the 50/10 OIR model, with females primarily impacted.
Collapse
Affiliation(s)
- Ellen C Ingolfsland
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Mandkhai Molomjamts
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ann Foster
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haeyeon Lee
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amelia Morikuni
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Husaam Qureishy
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Phu V Tran
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
Chen S, Liu Y, Zhang Y, Guo X, Bai T, He K, Zhu Y, Lei Y, Du M, Wang X, Liu Q, Yan H. Bruton's tyrosine kinase inhibition suppresses pathological retinal angiogenesis. Br J Pharmacol 2024. [PMID: 39374939 DOI: 10.1111/bph.17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/25/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND AND PURPOSE Pathological retinal angiogenesis is a typical manifestation of vision-threatening ocular diseases. Many patients exhibit poor response or resistance to anti-vascular endothelial growth factor (VEGF) agents. Bruton's tyrosine kinase (BTK) controls the proliferation and function of immune cells. Therefore, we examined the anti-inflammatory and anti-angiogenic effects of BTK inhibition on retinal angiogenesis. EXPERIMENTAL APPROACH Retinal neovascularisation and vascular leakage in oxygen-induced retinopathy in C57/BL6J mice were assessed by whole-mount retinal immunofluorescence. PLX5622 was used to deplete microglia and Rag1-knockout mice were used to test the contribution of lymphocytes to the effects of BTK inhibition. The cytokines, activation markers, inflammatory and immune-regulatory activities of retinal microglia/macrophages were detected using qRT-PCR and immunofluorescence. NLRP3 was detected by western blotting, and the effects of BTK inhibition on the co-culture of microglia and human retinal microvascular endothelial cells (HRMECs) were examined. KEY RESULTS BTK inhibition suppressed pathological angiogenesis and vascular leakage, and significantly reduced retinal inflammation, which involved microglia/macrophages but not lymphocytes. BTK inhibition increased anti-inflammatory factors and reduced pro-inflammatory cytokines that resulted from NLRP3 inflammasome activation. BTK inhibition suppressed the inflammatory activity of microglia/macrophages, and acted synergistically with anti-VEGF without retinal toxicity. Moreover, the supernatant of microglia incubated with BTK-inhibitor reduced the proliferation, tube formation and sprouting of HRMECs. CONCLUSION AND IMPLICATIONS BTK inhibition suppressed retinal neovascularisation and vascular leakage by modulating the inflammatory activity of microglia and macrophages. Our study suggests BTK inhibition as a novel and promising approach for alleviating pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yutian Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Xu Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Tinghui Bai
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-UK "Belt and Road" Ophthalmology Joint Laboratory, Tianjin, China
| |
Collapse
|
3
|
Mete M, Iacovello D, Maggio E. Novel Diagnosis and Therapeutics Approaches in Retina Diseases. Life (Basel) 2024; 14:1218. [PMID: 39459518 PMCID: PMC11508293 DOI: 10.3390/life14101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
We have warmly welcomed the opportunity to propose the Special Issue titled "Novel Diagnosis and Therapeutics Approaches in Retina Diseases", and numerous authors have decided to submit their works to it [...].
Collapse
Affiliation(s)
- Maurizio Mete
- Department of Ophthalmology, IRRCS Sacro Cuore-Don Calabria Hospital, 3024 Negrar, Italy; (D.I.); (E.M.)
- Ophthalmology Unit, Dipartimento Di Scienze Mediche e Chirurgiche, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| | - Daniela Iacovello
- Department of Ophthalmology, IRRCS Sacro Cuore-Don Calabria Hospital, 3024 Negrar, Italy; (D.I.); (E.M.)
| | - Emilia Maggio
- Department of Ophthalmology, IRRCS Sacro Cuore-Don Calabria Hospital, 3024 Negrar, Italy; (D.I.); (E.M.)
| |
Collapse
|
4
|
Wang S, Zhang J, Chen J, Tang L, Ke M, Xue Y, He Y, Gong Y, Li Z. ω-3PUFAs Inhibit Hypoxia-Induced Retinal Neovascularization via Regulating Microglial Pyroptosis through METTL14-Mediated m6A Modification of IFNB1 mRNA. Appl Biochem Biotechnol 2024; 196:5936-5952. [PMID: 38175416 DOI: 10.1007/s12010-023-04795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Retinal neovascular disease is the leading reason of vision impairment in all ages. Here, we figured out the function and mechanism of omega-3 polyunsaturated fatty acids (ω-3PUFAs) in hypoxia-induced retinal neovascularization by focusing on microglial pyroptosis. Microglia BV-2 cells were given ω-3PUFAs treatment and co-cultured with mouse retinal microvascular endothelial cells (MRMECs) under hypoxia. Tube formation assay, transwell assay and wound healing assay were utilized to monitor the MRMEC angiogenesis. Cell counting kit-8, western blot, lactate dehydrogenase assay, and enzyme-linked immunosorbent assay were used to assess pyroptosis of BV-2 cells. RNA sequencing and methylated RNA immunoprecipitation-polymerase chain reaction were utilized to identify the target gene of methyltransferase-like 14 (METTL14) and its N6-methyladenosine (m6A) level in BV-2 cells. BV-2 cells prominently enhanced MRMEC angiogenesis under hypoxia, but this effect was abolished after ω-3PUFAs treatment. ω-3PUFAs inhibited pyroptosis in hypoxia-induced BV-2 cells, and BV-2 cell pyroptosis boosted angiogenesis of MRMECs. Additionally, ω-3PUFAs markedly augment the expression of MELLL14 in BV-2 cells, and METTL14 knockdown promoted BV-2 cell pyroptosis and BV-2 cell-mediated angiogenesis in MEMECs. Mechanistically, interferon beta 1 (IFNB1) was a target of METTL14, and METTL14 silencing increased the mRNA expression and decreased the m6A modification of IFNB1 in BV-2 cells. Our results uncovered that ω-3PUFAs diminished hypoxia-induced retinal neovascularization through controlling microglial pyroptosis via METTL14-mediated m6A modification. This study offers a novel potential target for the treatment of retinal neovascular diseases.
Collapse
Affiliation(s)
- Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jing Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Chen
- Department of Ophthalmology, The People's Hospital of Huangmei, Huangmei Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanlan Tang
- Department of Ophthalmology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ying He
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
5
|
Shahror RA, Morris CA, Mohammed AA, Wild M, Zaman B, Mitchell CD, Phillips PH, Rusch NJ, Shosha E, Fouda AY. Role of myeloid cells in ischemic retinopathies: recent advances and unanswered questions. J Neuroinflammation 2024; 21:65. [PMID: 38454477 PMCID: PMC10918977 DOI: 10.1186/s12974-024-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.
Collapse
Affiliation(s)
- Rami A Shahror
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Carol A Morris
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Aya A Mohammed
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Bushra Zaman
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Christian D Mitchell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Paul H Phillips
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA.
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Zhou Z, Feng Z, Sun X, Wang Y, Dou G. The Role of Galectin-3 in Retinal Degeneration and Other Ocular Diseases: A Potential Novel Biomarker and Therapeutic Target. Int J Mol Sci 2023; 24:15516. [PMID: 37958500 PMCID: PMC10649114 DOI: 10.3390/ijms242115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Galectin-3 is the most studied member of the Galectin family, with a large range of mediation in biological activities such as cell growth, proliferation, apoptosis, differentiation, cell adhesion, and tissue repair, as well as in pathological processes such as inflammation, tissue fibrosis, and angiogenesis. As is known to all, inflammation, aberrant cell apoptosis, and neovascularization are the main pathophysiological processes in retinal degeneration and many ocular diseases. Therefore, the review aims to conclude the role of Gal3 in the retinal degeneration of various diseases as well as the occurrence and development of the diseases and discuss its molecular mechanisms according to research in systemic diseases. At the same time, we summarized the predictive role of Gal3 as a biomarker and the clinical application of its inhibitors to discuss the possibility of Gal3 as a novel target for the treatment of ocular diseases.
Collapse
Affiliation(s)
| | | | | | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| |
Collapse
|
7
|
Bai Q, Wang X, Yan H, Wen L, Zhou Z, Ye Y, Jing Y, Niu Y, Wang L, Zhang Z, Su J, Chang T, Dou G, Wang Y, Sun J. Microglia-Derived Spp1 Promotes Pathological Retinal Neovascularization via Activating Endothelial Kit/Akt/mTOR Signaling. J Pers Med 2023; 13:jpm13010146. [PMID: 36675807 PMCID: PMC9866717 DOI: 10.3390/jpm13010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Pathological retinal neovascularization (RNV) is the main character of ischemic ocular diseases, which causes severe visual impairments. Though retinal microglia are well acknowledged to play important roles in both physiological and pathological angiogenesis, the molecular mechanisms by which microglia communicates with endothelial cells (EC) remain unknown. In this study, using single-cell RNA sequencing, we revealed that the pro-inflammatory secreted protein Spp1 was the most upregulated gene in microglia in the mouse model of oxygen-induced retinopathy (OIR). Bioinformatic analysis showed that the expression of Spp1 in microglia was respectively regulated via nuclear factor-kappa B (NF-κB) and hypoxia-inducible factor 1α (HIF-1α) pathways, which was further confirmed through in vitro assays using BV2 microglia cell line. To mimic microglia-EC communication, the bEnd.3 endothelial cell line was cultured with conditional medium (CM) from BV2. We found that adding recombinant Spp1 to bEnd.3 as well as treating with hypoxic BV2 CM significantly enhanced EC proliferation and migration, while Spp1 neutralizing blocked those CM-induced effects. Moreover, RNA sequencing of BV2 CM-treated bEnd.3 revealed a significant downregulation of Kit, one of the type III tyrosine kinase receptors that plays a critical role in cell growth and activation. We further revealed that Spp1 increased phosphorylation and expression level of Akt/mTOR signaling cascade, which might account for its pro-angiogenic effects. Finally, we showed that intravitreal injection of Spp1 neutralizing antibody attenuated pathological RNV and improved visual function. Taken together, our work suggests that Spp1 mediates microglia-EC communication in RNV via activating endothelial Kit/Akt/mTOR signaling and is a potential target to treat ischemic ocular diseases.
Collapse
Affiliation(s)
- Qian Bai
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- 63750 Army Hospital of Chinese PLA, Xi’an 710043, China
| | - Xin Wang
- Lintong Rehabilitation Center of PLA Joint Logistics Support Force, Xi’an 710600, China
| | - Hongxiang Yan
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Lishi Wen
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Ziyi Zhou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yating Ye
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- College of Life Science, Northwestern University, Xi’an 710069, China
| | - Yutong Jing
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yali Niu
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Liang Wang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, The Northern Theater Air Force Hospital, Shenyang 110041, China
| | - Zifeng Zhang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jingbo Su
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Tianfang Chang
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yusheng Wang
- Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Y.W.); (J.S.); Tel.: +029-84775371 (Y.W.); +029-84771273 (J.S.)
| | - Jiaxing Sun
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Y.W.); (J.S.); Tel.: +029-84775371 (Y.W.); +029-84771273 (J.S.)
| |
Collapse
|