1
|
Zhao D, Ji H, Zhang W, He A, Guo C, Ma L, Liu Y. miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells. Genes Genomics 2024:10.1007/s13258-024-01598-4. [PMID: 39567416 DOI: 10.1007/s13258-024-01598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Dry eye disease (DED) is an ocular illness caused by insufficient tear secretion or poor tear quality, and inflammation is a key factor in its pathogenesis. Previous studies have shown that miRNAs are important regulatory factors in DED. OBJECTIVE The purpose of this study was to explore the potential mechanism by which miR-214-3p influenced the DED process by regulating the macrophage inflammatory response. METHODS We induced THP-1 cells to differentiate into M0 macrophages with 100 ng/mL phorbol-12-myristate-13-acetate (PMA) and then added 15 ng/mL lipopolysaccharide (LPS) to induce inflammation. The expression of related genes and proteins was detected via RT‒qPCR, Western blotting, ELISA and immunofluorescence staining; cell viability was measured using the CCK-8 assay; and flow cytometry was used to detect ROS levels. RESULTS In tear and serum samples from DED patients, the levels of miR-214-3p, IL-10, and Arg1 were decreased, and the levels of IL-6, TNF-α, IL-1β, and iNOS expression were increased. Moreover, the overexpression of miR-214-3p attenuated the effect of LPS and inhibited M1 polarization and inflammation in macrophages. Mechanistically, miR-214-3p inhibited macrophage ferroptosis by downregulating TFRC expression, thereby inhibiting macrophage M1 polarization and inflammation and alleviating the progression of DED. CONCLUSIONS Our study indicated that the upregulation of miR-214-3p expression might be a new target for DED therapy.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China
| | - Hao Ji
- Department of Information, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Weijia Zhang
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China
| | - Anni He
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Caizhe Guo
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Li Ma
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Liu
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China.
| |
Collapse
|
2
|
Curcio A, Scalise R, Indolfi C. Pathophysiology of Atrial Fibrillation and Approach to Therapy in Subjects Less than 60 Years Old. Int J Mol Sci 2024; 25:758. [PMID: 38255832 PMCID: PMC10815447 DOI: 10.3390/ijms25020758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that affects the left atrium, cardiac function, and the patients' survival rate. Due to empowered diagnostics, it has become increasingly recognized among young individuals as well, in whom it is influenced by a complex interplay of autoimmune, inflammatory, and electrophysiological mechanisms. Deepening our understanding of these mechanisms could contribute to improving AF management and treatment. Inflammation is a complexly regulated process, with interactions among various immune cell types, signaling molecules, and complement components. Addressing circulating antibodies and designing specific autoantibodies are promising therapeutic options. In cardiomyopathies or channelopathies, the first manifestation could be paroxysmal AF; persistent forms tend not to respond to antiarrhythmic drugs in these conditions. Further research, both in vitro and in vivo, on the use of genomic biotechnology could lead to new therapeutic approaches. Additional triggers that can be encountered in AF patients below 60 years of age are systemic hypertension, overweight, diabetes, and alcohol abuse. The aims of this review are to briefly report evidence from basic science and results of clinical studies that might explain the juvenile burden of the most encountered sustained supraventricular tachyarrhythmias in the general population.
Collapse
Affiliation(s)
- Antonio Curcio
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (R.S.); (C.I.)
| | | | | |
Collapse
|
3
|
Marcoux E, Sosnowski D, Ninni S, Mackasey M, Cadrin-Tourigny J, Roberts JD, Olesen MS, Fatkin D, Nattel S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ Arrhythm Electrophysiol 2023; 16:675-698. [PMID: 38018478 DOI: 10.1161/circep.123.003750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Atrial cardiomyopathy is a condition that causes electrical and contractile dysfunction of the atria, often along with structural and functional changes. Atrial cardiomyopathy most commonly occurs in conjunction with ventricular dysfunction, in which case it is difficult to discern the atrial features that are secondary to ventricular dysfunction from those that arise as a result of primary atrial abnormalities. Isolated atrial cardiomyopathy (atrial-selective cardiomyopathy [ASCM], with minimal or no ventricular function disturbance) is relatively uncommon and has most frequently been reported in association with deleterious rare genetic variants. The genes involved can affect proteins responsible for various biological functions, not necessarily limited to the heart but also involving extracardiac tissues. Atrial enlargement and atrial fibrillation are common complications of ASCM and are often the predominant clinical features. Despite progress in identifying disease-causing rare variants, an overarching understanding and approach to the molecular pathogenesis, phenotypic spectrum, and treatment of genetic ASCM is still lacking. In this review, we aim to analyze the literature relevant to genetic ASCM to understand the key features of this rather rare condition, as well as to identify distinct characteristics of ASCM and its arrhythmic complications that are related to specific genotypes. We outline the insights that have been gained using basic research models of genetic ASCM in vitro and in vivo and correlate these with patient outcomes. Finally, we provide suggestions for the future investigation of patients with genetic ASCM and improvements to basic scientific models and systems. Overall, a better understanding of the genetic underpinnings of ASCM will not only provide a better understanding of this condition but also promises to clarify our appreciation of the more commonly occurring forms of atrial cardiomyopathy associated with ventricular dysfunction.
Collapse
Affiliation(s)
- Edouard Marcoux
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Faculty of Pharmacy, Université de Montréal. (E.M.)
| | - Deanna Sosnowski
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Sandro Ninni
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, France (S. Ninni)
| | - Martin Mackasey
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal. (J.C.-T.)
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Canada (J.D.R.)
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (D.F.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington (D.F.)
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal. (S. Nattel.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
- Institute of Pharmacology. West German Heart and Vascular Center, University Duisburg-Essen, Germany (S. Nattel)
- IHU LYRIC & Fondation Bordeaux Université de Bordeaux, France (S. Nattel)
| |
Collapse
|
4
|
Li N, Li YJ, Guo XJ, Wu SH, Jiang WF, Zhang DL, Wang KW, Li L, Sun YM, Xu YJ, Yang YQ, Qiu XB. Discovery of TBX20 as a Novel Gene Underlying Atrial Fibrillation. BIOLOGY 2023; 12:1186. [PMID: 37759586 PMCID: PMC10525918 DOI: 10.3390/biology12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Atrial fibrillation (AF), the most prevalent type of sustained cardiac dysrhythmia globally, confers strikingly enhanced risks for cognitive dysfunction, stroke, chronic cardiac failure, and sudden cardiovascular demise. Aggregating studies underscore the crucial roles of inherited determinants in the occurrence and perpetuation of AF. However, due to conspicuous genetic heterogeneity, the inherited defects accounting for AF remain largely indefinite. Here, via whole-genome genotyping with genetic markers and a linkage assay in a family suffering from AF, a new AF-causative locus was located at human chromosome 7p14.2-p14.3, a ~4.89 cM (~4.43-Mb) interval between the markers D7S526 and D7S2250. An exome-wide sequencing assay unveiled that, at the defined locus, the mutation in the TBX20 gene, NM_001077653.2: c.695A>G; p.(His232Arg), was solely co-segregated with AF in the family. Additionally, a Sanger sequencing assay of TBX20 in another family suffering from AF uncovered a novel mutation, NM_001077653.2: c.862G>C; p.(Asp288His). Neither of the two mutations were observed in 600 unrelated control individuals. Functional investigations demonstrated that the two mutations both significantly reduced the transactivation of the target gene KCNH2 (a well-established AF-causing gene) and the ability to bind the promoter of KCNH2, while they had no effect on the nuclear distribution of TBX20. Conclusively, these findings reveal a new AF-causative locus at human chromosome 7p14.2-p14.3 and strongly indicate TBX20 as a novel AF-predisposing gene, shedding light on the mechanism underlying AF and suggesting clinical significance for the allele-specific treatment of AF patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China;
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Xiao-Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| | - Dao-Liang Zhang
- Cardiac Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China;
| | - Kun-Wei Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China;
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Tongji University School of Medicine, Shanghai 200092, China;
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China;
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China; (X.-J.G.); (Y.-J.X.)
- Center for Complex Cardiac Arrhythmias of Minhang District, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; (Y.-J.L.); (S.-H.W.); (W.-F.J.)
| |
Collapse
|