1
|
Gonçalves FCDM, Mantoan LPB, Corrêa CV, Parreiras NDS, de Almeida LFR, Ono EO, Rodrigues JD, Prado RDM, Boaro CSF. Effects of Salicylic Acid on Physiological Responses of Pepper Plants Pre-Subjected to Drought under Rehydration Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2805. [PMID: 39409675 PMCID: PMC11479176 DOI: 10.3390/plants13192805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Capsicum annuum L. has worldwide distribution, but drought has limited its production. There is a lack of research to better understand how this species copes with drought stress, whether it is reversible, and the effects of mitigating agents such as salicylic acid (SA). Therefore, this study aimed to understand the mechanisms of action of SA and rehydration on the physiology of pepper plants grown under drought conditions. The factorial scheme adopted was 3 × 4, with three water regimes (irrigation, drought, and rehydration) and four SA concentrations, namely: 0 (control), 0.5, 1, and 1.5 mM. This study evaluated leaf water percentage, water potential of shoots, chlorophylls (a and b), carotenoids, stomatal conductance, chlorophyll a fluorescence, and hydrogen peroxide (H2O2) concentration at different times of day, water conditions (irrigation, drought, and rehydration), and SA applications (without the addition of a regulator (0) and with the addition of SA at concentrations equal to 0.5, 1, and 1.5 mM). In general, exogenous SA application increased stomatal conductance (gs) responses and modified the fluorescence parameters (ΦPSII, qP, ETR, NPQ, D, and E) of sweet pepper plants subjected to drought followed by rehydration. It was found that the use of SA, especially at concentrations of 1 mM in combination with rehydration, modulates gs, which is reflected in a higher electron transport rate. This, along with the production of photosynthetic pigments, suggests that H2O2 did not cause membrane damage, thereby mitigating the water deficit in pepper plants. Plants under drought conditions and rehydration with foliar SA application at concentrations of 1 mM demonstrated protection against damage resulting from water stress. Focusing on sustainable productivity, foliar SA application of 1 mM could be recommended as a technique to overcome the adverse effects of water stress on pepper plants cultivated in arid and semi-arid regions.
Collapse
Affiliation(s)
- Fabrício Custódio de Moura Gonçalves
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Luís Paulo Benetti Mantoan
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Carla Verônica Corrêa
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Nathália de Souza Parreiras
- Department of Horticulture, Faculty of Agricultural Sciences, São Paulo State University (UNESP), Campus de Botucatu, Avenida Universitária, 3780 Altos do Paraíso, Botucatu 18610-034, Brazil; (C.V.C.); (N.d.S.P.)
| | - Luiz Fernando Rolim de Almeida
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Elizabeth Orika Ono
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - João Domingos Rodrigues
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| | - Renato de Mello Prado
- Department of Soils and Fertilizers, Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Campus Jaboticabal, Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil;
| | - Carmen Sílvia Fernandes Boaro
- Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Campus de Botucatu, R. Prof. Dr. Antônio Celso Wagner Zanin, 250 Distrito de Rubião Junior, Botucatu 18618-689, Brazil; (L.P.B.M.); (L.F.R.d.A.); (E.O.O.); (J.D.R.); (C.S.F.B.)
| |
Collapse
|
2
|
Shah OU, Peng J, Zhou L, Khan WU, Shanshan Z, Zhuyu P, Liu P, Khan LU. Comparative omics-based characterization, phylogeny and melatonin-mediated expression analyses of GDSL genes in pitaya ( Selenicereus undatus L.) against multifactorial abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1493-1515. [PMID: 39310703 PMCID: PMC11413313 DOI: 10.1007/s12298-024-01506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
The GDSL gene family plays diverse roles in plant growth and development. Despite its significance, the functions of the GDSL in the pitaya plant are still unknown. Pitaya (Selenicereus undatus L.) also called Hylocereus undatus (Hu), belongs to the family Cactaceae and is an important tropical plant that contains high dietary fibers and antioxidants. In the present investigation, we screened 91 HuGDSL genes in the pitaya genome by conducting a comprehensive computational analysis. The phylogenetic tree categorized HuGDSL genes into 9 distinct clades in combination with four other species. Further, 29 duplicate events were identified of which 12 were tandem, and 17 were segmental. The synteny analysis revealed that segmental duplication was more prominent than tandem duplication among these genes. The majority of duplicated gene pairs (95%) indicate their Ka/Ks ratios ranging from 0.1 to 0.3, which shows that maximum HuGDSL genes were under purifying selection pressure. The cis-acting element in the promotor region contains phytohormones such as auxin, gibberellin, jasmonic acid, and abscisic acid abundantly. Finally, the HuGDSL gene expression pattern under single and multiple stresses was analyzed via; RNA-seq. We select ten stress-responsive HuGDSL genes for RT-qPCR validation. After careful investigation, we identified five HuGDSL candidate genes (HuGDSL-1/3/55/59, and HuGDSL-78) based on RNA-seq, and RT-qPCR data that showed enhanced expression in stress and melatonin-applied seedlings. This study represents valuable insights into maintaining pitaya growth and development by preparing stress-resilient pitaya genotypes through modern biotechnological techniques. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01506-w.
Collapse
Affiliation(s)
- Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Jiantao Peng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Wasi Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Zhang Shanshan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Pan Zhuyu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Pingwu Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| | - Latif Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry Hainan University, Sanya, 572025 Hainan China
| |
Collapse
|
3
|
Peter O, Imran M, Shaffique S, Kang SM, Rolly NK, Felistus C, Bilal S, Dan-Dan Z, Injamum-Ul-Hoque M, Kwon EH, Mong MN, Gam HJ, Kim WC, Lee IJ. Combined application of melatonin and Bacillus sp. strain IPR-4 ameliorates drought stress tolerance via hormonal, antioxidant, and physiomolecular signaling in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1274964. [PMID: 38974978 PMCID: PMC11224487 DOI: 10.3389/fpls.2024.1274964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The role of melatonin and plant growth-promoting rhizobacteria (PGPR) in enhancing abiotic stress tolerance has been widely investigated. However, the mechanism underlying the interaction between melatonin and PGPR in drought stress tolerance is poorly understood. In this study, we investigated the role of Bacillus sp. strain IPR-4 co-inoculated with melatonin (IPR-4/MET) to ameliorate drought stress response in soybean. Initially, 16 random isolates were selected from a previously pooled collection of isolates from soil at plant physiology lab, and were screesn for plant growth promoting (PGP) traits and their survival rate polyethylene glycol (PEG6000) (5%, 10%, and 15%). Among these isolate Bacillus sp. strain IPR-4 were selected on base of its significant PGP traits such as the survival rate gradient concentrations of PEG6000 (5%, 10%, and 15%) compared to other isolates, and produced high levels of indole-3-acetic acid and organic acids, coupled with exopolysaccharide, siderophores, and phosphate solubilization under drought stress. The Bacillus sp. strain IPR-4 were then validated using 16S rRNA sequencing. To further investigate the growth-promoting ability of the Bacillus sp. IPR-4 and its potential interaction with MET, the bacterial inoculum (40 mL of 4.5 × 10-8 cells/mL) was applied alone or in combination with MET to soybean plants for 5 days. Then, pre-inoculated soybean plants were subjected to drought stress conditions for 9 days by withholding water under greenhouse conditions. Furthermore, when IPR-4/MET was applied to plants subjected to drought stress, a significant increase in plant height (33.3%) and biomass (fresh weight) was observed. Similarly, total chlorophyll content increased by 37.1%, whereas the activity of peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, and glutathione reductase increased by 38.4%, 34.14%, 76.8%, 69.8%, and 31.6%, respectively. Moreover, the hydrogen peroxide content and malondialdehyde decreased by 37.3% and 30% in drought-stressed plants treated with IPR-4 and melatonin. Regarding the 2,2-diphenyl-1-picrylhydrazyl activity and total phenolic content, shows 38% and 49.6% increase, respectively. Likewise, Bacillus-melatonin-treated plants enhanced the uptake of magnesium, calcium, and potassium by 31.2%, 50.7%, and 30.5%, respectively. Under the same conditions, the salicylic acid content increased by 29.1%, whereas a decreasing abscisic acid content (25.5%) was observed. The expression levels of GmNCED3, GmDREB2, and GmbZIP1 were recorded as the lowest. However, Bacillus-melatonin-treated plants recorded the highest expression levels (upregulated) of GmCYP707A1 and GmCYP707A2, GmPAL2.1, and GmERD1 in response to drought stress. In a nutshell, these data confirm that Bacillus sp. IPR-4 and melatonin co-inoculation has the highest plant growth-promoting efficiency under both normal and drought stress conditions. Bacillus sp. IPR-4/melatonin is therefore proposed as an effective plant growth regulator that optimizes nutrient uptake, modulates redox homeostasis, and enhances drought tolerance in soybean plants.
Collapse
Affiliation(s)
- Odongkara Peter
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Imran
- Biosafety Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Center for International Development, Kyungpook National University, Daegu, Republic of Korea
| | - Chebitok Felistus
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Zhao Dan-Dan
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration, Wonju, Republic of Korea
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mohammad Nazree Mong
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Chan- Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Jiang L, Yun M, Ma Y, Qu T. Melatonin Mitigates Water Deficit Stress in Cenchrus alopecuroides (L.) Thunb through Up-Regulating Gene Expression Related to the Photosynthetic Rate, Flavonoid Synthesis, and the Assimilatory Sulfate Reduction Pathway. PLANTS (BASEL, SWITZERLAND) 2024; 13:716. [PMID: 38475560 DOI: 10.3390/plants13050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Melatonin can improve plant adaptability to water deficit stress by regulating the biosynthesis of flavonoids and improving the reactive oxygen species-scavenging enzyme system. However, it remains unclear whether melatonin mitigates the effects and causes of water deficit stress in Cenchrus alopecuroides. We conducted a PEG-simulated water stress pot experiment to determine whether and how exogenous melatonin alleviates water deficit in C. alopecuroides. The experiment was divided into four treatments: (1) normal watering (Control), (2) 40% PEG-6000 treatment (D), (3) 100 μmol·L-1 melatonin treatment (MT), and (4) both melatonin and PEG-6000 treatment (DMT). The results showed that melatonin can alleviate water deficit in C. alopecuroides by effectively inhibiting plant chlorophyll degradation and MDA accumulation while increasing antioxidant enzyme activities and photosynthetic rates under water deficit stress. The transcriptome results indicated that melatonin regulates the expression of genes with the biosynthesis pathway of flavonoids (by increasing the expression of PAL, 4CL, HCT, and CHS), photosynthesis-antenna proteins (by increasing the expression of LHC), and sulfur metabolism (the expression of PAPSS and CysC is up-regulated in the assimilatory sulfate reduction pathway), while up-regulating the transcription factors (AP2/ERF-ERF-, C2H2-, WRKY-, Tify-, bHLH-, NAC-, and MYB-related). These findings revealed the possible causes by which melatonin mitigates water deficit stress in C. alopecuroides, which provided novel insights into the role of melatonin in water deficit stress.
Collapse
Affiliation(s)
- Li Jiang
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Minqiang Yun
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Yinxi Ma
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| | - Tongbao Qu
- College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
5
|
Shah IH, Manzoor MA, Jinhui W, Li X, Hameed MK, Rehaman A, Li P, Zhang Y, Niu Q, Chang L. Comprehensive review: Effects of climate change and greenhouse gases emission relevance to environmental stress on horticultural crops and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119978. [PMID: 38169258 DOI: 10.1016/j.jenvman.2023.119978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Global climate change exerts a significant impact on sustainable horticultural crop production and quality. Rising Global temperatures have compelled the agricultural community to adjust planting and harvesting schedules, often necessitating earlier crop cultivation. Notably, climate change introduces a suite of ominous factors, such as greenhouse gas emissions (CGHs), including elevated temperature, increased carbon dioxide (CO2) concentrations, nitrous oxide (N2O) and methane (CH4) ozone depletion (O3), and deforestation, all of which intensify environmental stresses on crops. Consequently, climate change stands poised to adversely affect crop yields and livestock production. Therefore, the primary objective of the review article is to furnish a comprehensive overview of the multifaceted factors influencing horticulture production, encompassing fruits, vegetables, and plantation crops with a particular emphasis on greenhouse gas emissions and environmental stressors such as high temperature, drought, salinity, and emission of CO2. Additionally, this review will explore the implementation of novel horticultural crop varieties and greenhouse technology that can contribute to mitigating the adverse impact of climate change on agricultural crops.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wu Jinhui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xuyang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Asad Rehaman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
6
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Yang H, Fang R, Luo L, Yang W, Huang Q, Yang C, Hui W, Gong W, Wang J. Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1226041. [PMID: 37701800 PMCID: PMC10494719 DOI: 10.3389/fpls.2023.1226041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023]
Abstract
Salicylic acid (SA) has been recognized as a promising molecule for improving abiotic stress tolerance in plants due to its ability to enhance antioxidant defense system, and promote root architecture system. Recent research has focused on uncovering the mechanisms by which SA confers abiotic stress tolerance in horticultural crops. SA has been shown to act as a signaling molecule that triggers various physiological and morphological responses in plants. SA regulates the production of reactive oxygen species (ROS). Moreover, it can also act as signaling molecule that regulate the expression of stress-responsive genes. SA can directly interact with various hormones, proteins and enzymes involved in abiotic stress tolerance. SA regulates the antioxidant enzymes activities that scavenge toxic ROS, thereby reducing oxidative damage in plants. SA can also activate protein kinases that phosphorylate and activate transcription factors involved in stress responses. Understanding these mechanisms is essential for developing effective strategies to improve crop resilience in the face of changing environmental conditions. Current information provides valuable insights for farmers and plant researchers, offering new strategies to enhance crop resilience and productivity in the face of environmental challenges. By harnessing the power of SA and its signaling pathways, farmers can develop more effective stress management techniques and optimize crop performance. Plant researchers can also explore innovative approaches to breed or engineer crops with enhanced stress tolerance, thereby contributing to sustainable agriculture and food security.
Collapse
Affiliation(s)
- Hua Yang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Rui Fang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Ling Luo
- School of Environment, Sichuan Agricultural University, Chengdu, China
| | - Wei Yang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Qiong Huang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Chunlin Yang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Wenkai Hui
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Wei Gong
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| | - Jingyan Wang
- Provincial Key Laboratory of Forestry Ecological Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural UR.A.niversity, Chengdu, China
| |
Collapse
|
8
|
Zhang Z, Chen Z, Song H, Cheng S. From plant survival to thriving: exploring the miracle of brassinosteroids for boosting abiotic stress resilience in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1218229. [PMID: 37546254 PMCID: PMC10401277 DOI: 10.3389/fpls.2023.1218229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Abiotic stresses pose significant threat to horticultural crop production worldwide. These stresses adversely affect plant growth, development, and ultimately declined crop growth, yield and quality. In recent years, plant scientists have been actively investigating innovative strategies to enhance abiotic stress resilience in crops, and one promising avenue of research focuses on the use of brassinosteroids (BRs). BRs are a class of plant hormones that play crucial roles in various physiological processes, including cell elongation, differentiation, and stress responses. They have emerged as potent regulators of plant growth and development, and their role in improving abiotic stress tolerance is gaining considerable attention. BRs have been shown to mitigate the negative effects of abiotic stresses by modulating key physiological and biochemical processes, including stomatal regulation, antioxidant defense, osmotic adjustment, and nutrient uptake. Abiotic stresses disrupt numerous physiological functions and lead to undesirable phenotypic traits in plants. The use of BRs as a tool to improve crop resilience offers significant promise for sustainable agriculture in the face of increasing abiotic stresses caused by climate change. By unraveling the phenomenon of BRs, this review emphasizes the potential of BRs as an innovative approach for boosting abiotic stress tolerance and improving the overall productivity and quality of horticultural crops. Further research and field trials are necessary to fully harness the benefits of BRs and translate these findings into practical applications for crop production systems.
Collapse
Affiliation(s)
- Zhilu Zhang
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Zhongyu Chen
- People’s Park Management Office of Nanyang City Garden and Greening Center, Garden and Greening Center of Nanyang City, Nanyang, Henan, China
| | - Haina Song
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| | - Shiping Cheng
- College of Chemistry and Environmental Engineering, Ping Dingshan University, Pingdingshan, Henan, China
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, Henan, China
| |
Collapse
|
9
|
Manzoor M, Naz S, Muhammad HMD, Ahmad R. Smart reprogramming of jujube germplasm against salinity tolerance through molecular tools. Funct Integr Genomics 2023; 23:222. [PMID: 37402037 DOI: 10.1007/s10142-023-01140-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Affiliation(s)
- Meryam Manzoor
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Riaz Ahmad
- Department of Horticulture, The University of Agriculture, Dera Ismail Khan, Pakistan.
| |
Collapse
|
10
|
Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131862. [PMID: 37329597 DOI: 10.1016/j.jhazmat.2023.131862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jochen Bundschuh
- Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, ROC; School of Civil Engineering and Surveying, University of Southern Queensland, Australia
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, South Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China.
| |
Collapse
|
11
|
Ahmad I, Zhu G, Zhou G, Liu J, Younas MU, Zhu Y. Melatonin Role in Plant Growth and Physiology under Abiotic Stress. Int J Mol Sci 2023; 24:ijms24108759. [PMID: 37240106 DOI: 10.3390/ijms24108759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Phyto-melatonin improves crop yield by mitigating the negative effects of abiotic stresses on plant growth. Numerous studies are currently being conducted to investigate the significant performance of melatonin in crops in regulating agricultural growth and productivity. However, a comprehensive review of the pivotal performance of phyto-melatonin in regulating plant morpho-physiological and biochemical activities under abiotic stresses needs to be clarified. This review focused on the research on morpho-physiological activities, plant growth regulation, redox status, and signal transduction in plants under abiotic stresses. Furthermore, it also highlighted the role of phyto-melatonin in plant defense systems and as biostimulants under abiotic stress conditions. The study revealed that phyto-melatonin enhances some leaf senescence proteins, and that protein further interacts with the plant's photosynthesis activity, macromolecules, and changes in redox and response to abiotic stress. Our goal is to thoroughly evaluate phyto-melatonin performance under abiotic stress, which will help us better understand the mechanism by which phyto-melatonin regulates crop growth and yield.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yiming Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|