1
|
Tanrıverdi Ö, Alkan A, Karaoglu T, Kitaplı S, Yildiz A. COVID-19 and Carcinogenesis: Exploring the Hidden Links. Cureus 2024; 16:e68303. [PMID: 39350850 PMCID: PMC11441415 DOI: 10.7759/cureus.68303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has been studied predominantly in terms of its immediate respiratory and systemic effects. However, emerging evidence suggests possible long-term effects, including its role in carcinogenesis. This comprehensive review explores the complex relationship between COVID-19 and cancer development, focusing on immune dysregulation, chronic inflammation, genetic and epigenetic alterations, and the impact of therapeutic interventions. We also focused on the molecular mechanisms by which SARS-CoV-2 may facilitate cancer progression, including the roles of angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and FURIN. Additionally, we examined the possible carcinogenic effects of long-term COVID-19 treatments and the interaction between co-infections and cancer risk. Our findings highlight the need for increased cancer surveillance in COVID-19 survivors. In the post-COVID-19 period, it can be thought that inflammation associated with excessive cytokine release, especially interleukin-6, genetic and epigenetic changes, and co-infections with oncogenic viruses such as Epstein-Barr virus or human papillomavirus may be effective in the development and progression of cancer. Further research is needed to explain the mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Özgür Tanrıverdi
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | - Ali Alkan
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | | | - Sait Kitaplı
- Medical Oncology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| | - Aysegul Yildiz
- Molecular Biology and Genetics, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, TUR
| |
Collapse
|
2
|
Makarov I, Voronkina D, Gurshchenkov A, Ryzhkov A, Starshinova A, Kudlay D, Mitrofanova L. Are Endomyocardial Ventricular Biopsies Useful for Assessing Myocardial Fibrosis? J Clin Med 2024; 13:3275. [PMID: 38892986 PMCID: PMC11172522 DOI: 10.3390/jcm13113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Myocardial fibrosis is an important factor in the progression of cardiovascular diseases. However, there is still no universal lifetime method of myocardial fibrosis assessment that has a high prognostic significance. The aim of the study was to determine the significance of ventricular endomyocardial biopsies for the assessment of myocardial fibrosis and to identify the severity of myocardial fibrosis in different cardiovascular diseases. Material and Methods: Endomyocardial biopsies (EMBs) of 20 patients with chronic lymphocytic myocarditis (CM), endomyocardial fragments obtained during septal reduction of 21 patients with hypertrophic cardiomyopathy (HCM), and 36 patients with a long history of hypertensive and ischemic heart disease (HHD + IHD) were included in the study. The control group was formed from EMBs taken on 12-14 days after heart transplantation (n = 28). Also, for one patient without clinical and morphological data for cardiovascular pathology, postmortem myocardial fragments were taken from typical EMB and septal reduction sites. The relative area of fibrosis was calculated as the ratio of the total area of collagen fibers to the area of the whole biopsy. Endocardium and subendocardial fibrosis were not included in the total biopsy area. Results: The relative fibrosis area in the EMBs in the CM patient group was 5.6 [3.3; 12.6]%, 11.1 [6.6; 15.9]% in the HHD + IHD patient group, 13.4 [8.8; 16.7]% in the HCM patient group, and 2.7 [1.5; 4.6]% in the control group. When comparing the fibrosis area of the CM patients in repeat EMBs, it was found that the fibrosis area in the first EMBs was 7.6 [4.8; 12.0]%, and in repeat EMBs, it was 5.3 [3.2; 7.6]%. No statistically significant differences were found between the primary and repeat EMBs (p = 0.15). In ROC analysis, the area of fibrosis in the myocardium of 1.1% (or lower than one) was found to be highly specific for the control group of patients compared to the study patients. Conclusions: EMB in the assessment of myocardial fibrosis has a questionable role because of the heterogeneity of fibrotic changes in the myocardium.
Collapse
Affiliation(s)
- Igor Makarov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Daria Voronkina
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Alexander Gurshchenkov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Anton Ryzhkov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Anna Starshinova
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| | - Dmitry Kudlay
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia;
- Institute of Immunology FMBA of Russia, Moscow 115478, Russia
| | - Lubov Mitrofanova
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia; (D.V.); (A.G.); (A.R.); (L.M.)
| |
Collapse
|
3
|
Tangos M, Jarkas M, Akin I, El-Battrawy I, Hamdani N. Cardiac damage and tropism of severe acute respiratory syndrome coronavirus 2. Curr Opin Microbiol 2024; 78:102437. [PMID: 38394964 DOI: 10.1016/j.mib.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Until now, the World Health Organization registered over 771 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection worldwide, of which 6.97 million resulted in death. Virus-related cardiovascular events and pre-existing heart problems have been identified as major contributing factors to global infection-related morbidity and mortality, emphasizing the necessity for risk assessment and future prevention. In this review, we highlight cardiac manifestations that might arise from an infection with SARS-CoV-2 and provide an overview of known comorbidities that worsen the outcome. Additionally, we aim to summarize the therapeutic strategies proposed to reverse virus-associated myocardial damage, which will be further highlighted in this review, with an outlook to successful recovery and prevention.
Collapse
Affiliation(s)
- Melina Tangos
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Muhammad Jarkas
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Ibrahim Akin
- First Department of Medicine, University Medical Centre Mannheim (UMM), Mannheim, Germany
| | - Ibrahim El-Battrawy
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology and Angiology, Bergmannsheil University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany; Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany; Department of Cardiology, St. Josef-Hospital of the Ruhr University Bochum, Bochum, Germany; HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands.
| |
Collapse
|