1
|
Sajjad W, Ilahi N, Kang S, Bahadur A, Banerjee A, Zada S, Ali B, Rafiq M, Zheng G. Microbial diversity and community structure dynamics in acid mine drainage: Acidic fire with dissolved heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168635. [PMID: 37981161 DOI: 10.1016/j.scitotenv.2023.168635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Acid mine drainage (AMD) is one of the leading causes of environmental pollution and is linked to public health and ecological consequences. Microbes-mineral interaction generates AMD, but microorganisms can also remedy AMD pollution. Exploring the microbial response to AMD effluents may reveal survival strategies in extreme ecosystems. Three distinct sites across a mine (inside the mine, the entrance of the mine, and outside) were selected to study their heavy metal concentrations due to significant variations in pH and physicochemical characteristics, and high-throughput sequencing was carried out to investigate the microbial diversity. The metal and ion concentrations followed the order SO42-, Fe, Cu, Zn, Mg, Pb, Co, Cr, and Ni from highest to lowest, respectively. Maximum sequences were allocated to Proteobacteria and Firmicutes. Among archaea, the abundance of Thaumarchaeota and Euryarchaeota was higher outside of mine. Most of the genera (23.12 %) were unclassified and unknown. The average OTUs (operational taxonomic units) were significantly higher outside the mine; however, diversity indices were not significantly different across the mine sites. Hierarchical clustering of selective genera and nMDS ordination of OTUs displayed greater segregation resolution inside and outside of mine, whereas the entrance samples clustered with greater similarity. Heterogeneous selection might be the main driver of community composition outside the mine, whereas stochastic processes became prominent inside the mine. However, the ANOSIM test shows a relatively even distribution of community composition within and between the groups. Microbial phyla showed both positive and negative correlations with physicochemical factors. A greater number of biomarkers were reported outside of the mine. Predictive functional investigation revealed the existence of putative degradative, metabolic, and biosynthetic pathways. This study presents a rare dataset in our understanding of microbial diversity and distribution as shaped by the ecological gradient and potential novelty in phylogenetic/taxonomic diversity in AMD, with potential biotechnological applications.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nikhat Ilahi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Abhishek Banerjee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sahib Zada
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan.
| | - Guodong Zheng
- School of Environmental Studies, China University Geosciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Diaz-Vanegas C, Héry M, Desoeuvre A, Bruneel O, Joulian C, Jacob J, Battaglia-Brunet F, Casiot C. Towards an understanding of the factors controlling bacterial diversity and activity in semi-passive Fe- and As-oxidizing bioreactors treating arsenic-rich acid mine drainage. FEMS Microbiol Ecol 2023; 99:fiad089. [PMID: 37632198 DOI: 10.1093/femsec/fiad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
Semi-passive bioreactors based on iron and arsenic oxidation and coprecipitation are promising for the treatment of As-rich acid mine drainages. However, their performance in the field remains variable and unpredictable. Two bioreactors filled with distinct biomass carriers (plastic or a mix of wood and pozzolana) were monitored during 1 year. We characterized the dynamic of the bacterial communities in these bioreactors, and explored the influence of environmental and operational drivers on their diversity and activity. Bacterial diversity was analyzed by 16S rRNA gene metabarcoding. The aioA genes and transcripts were quantified by qPCR and RT-qPCR. Bacterial communities were dominated by several iron-oxidizing genera. Shifts in the communities were attributed to operational and physiochemical parameters including the nature of the biomass carrier, the water pH, temperature, arsenic, and iron concentrations. The bioreactor filled with wood and pozzolana showed a better resilience to disturbances, related to a higher bacterial alpha diversity. We evidenced for the first time aioA expression in a treatment system, associated with the presence of active Thiomonas spp. This confirmed the contribution of biological arsenite oxidation to arsenic removal. The resilience and the functional redundancy of the communities developed in the bioreactors conferred robustness and stability to the treatment systems.
Collapse
Affiliation(s)
- Camila Diaz-Vanegas
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
- French Geological Survey (BRGM), Water, Environment, Process and Analyses Division, Orléans, France
| | - Marina Héry
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Angélique Desoeuvre
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Odile Bruneel
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Catherine Joulian
- French Geological Survey (BRGM), Water, Environment, Process and Analyses Division, Orléans, France
| | - Jérôme Jacob
- French Geological Survey (BRGM), Water, Environment, Process and Analyses Division, Orléans, France
| | | | - Corinne Casiot
- HydroSciences Montpellier, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
3
|
Torres-Rojas F, Hernández P, Vargas IT, Nancucheo I. Electrotrophic perchlorate reduction by a psychrotolerant acidophile isolated from an acid rock drainage in Antarctica. Bioelectrochemistry 2023; 152:108458. [PMID: 37178525 DOI: 10.1016/j.bioelechem.2023.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
A new extremophilic isolate (USS-CCA7) was obtained from an acidic environment (pH ∼ 3.2) in Antarctica phylogenetically related to Acidithiobacillus ferrivorans; its electrotrophic capacities were evaluated in a three-electrode electrochemical cell. Cyclic voltammetry showed cathodic peaks of -428 mV, -536 mV, and -634 mV (vs. Ag/AgCl; pH = 1.7; 3 M KCl) for nitrate, oxygen, and perchlorate, respectively. The catalytic role of this microorganism was also observed by a decrease in the charge transfer resistance registered via electrochemical impedance spectroscopy. Five-day chronoamperometry of culture at pH = 1.7, USS-CCA7 showed a perchlorate removal rate of 19.106 ± 1.689 mgL-1 day-1 and a cathodic efficiency of 112 ± 5.2 %. Growth on electrodes was observed by epifluorescence and scanning electron microscopy. Interestingly, the results showed that toward higher pH, the cathodic peak of perchlorate is reduced in the voltammetric profiles. This study highlights the use of this psychrotolerant acidophile for the bioremediation of harsh perchlorate-pressured terrestrial under acidic conditions.
Collapse
Affiliation(s)
- Felipe Torres-Rojas
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Pedro Hernández
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile
| | - Ivan Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile.
| |
Collapse
|
4
|
Dopson M, González-Rosales C, Holmes DS, Mykytczuk N. Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies. Front Microbiol 2023; 14:1149903. [PMID: 37007468 PMCID: PMC10050440 DOI: 10.3389/fmicb.2023.1149903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, “Ferrovum myxofaciens,” and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of “omics” techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- *Correspondence: Mark Dopson
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Nadia Mykytczuk
- Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
5
|
Kelly LC, Rivett DW, Pakostova E, Creer S, Cotterell T, Johnson DB. Mineralogy affects prokaryotic community composition in an acidic metal mine. Microbiol Res 2022; 266:127257. [DOI: 10.1016/j.micres.2022.127257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
6
|
Microbial Diversity of a Disused Copper Mine Site (Parys Mountain, UK), Dominated by Intensive Eukaryotic Filamentous Growth. Microorganisms 2022; 10:microorganisms10091694. [PMID: 36144296 PMCID: PMC9504087 DOI: 10.3390/microorganisms10091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The Parys Mountain copper mine (Wales, UK) contains a wide range of discrete environmental microniches with various physicochemical conditions that shape microbial community composition. Our aim was to assess the microbial community in the sediments and overlying water column in an acidic mine drainage (AMD) site containing abundant filamentous biogenic growth via application of a combination of chemical analysis and taxonomic profiling using 16S rRNA gene amplicon sequencing. Our results were then compared to previously studied sites at Parys Mt. Overall, the sediment microbiome showed a dominance of bacteria over archaea, particularly those belonging to Proteobacteria (genera Acidiphilium and Acidisphaera), Acidobacteriota (subgroup 1), Chloroflexota (AD3 cluster), Nitrospirota (Leptospirillum) and the uncultured Planctomycetota/CPIa-3 termite group. Archaea were only present in the sediment in small quantities, being represented by the Terrestrial Miscellaneous Euryarchaeota Group (TMEG), Thermoplasmatales and Ca. Micrarchaeota (Ca. Micracaldota). Bacteria, mostly of the genera Acidiphilium and Leptospirillum, also dominated within the filamentous streamers while archaea were largely absent. This study found pH and dissolved solutes to be the most important parameters correlating with relative proportions of bacteria to archaea in an AMD environment and revealed the abundance patterns of native acidophilic prokaryotes inhabiting Parys Mt sites and their niche specificities.
Collapse
|
7
|
She Z, Pan X, Wang J, Shao R, Wang G, Wang S, Yue Z. Vertical environmental gradient drives prokaryotic microbial community assembly and species coexistence in a stratified acid mine drainage lake. WATER RESEARCH 2021; 206:117739. [PMID: 34653798 DOI: 10.1016/j.watres.2021.117739] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Acid mine drainage (AMD) lakes are typical hydrologic features caused by open pit mining and represent extreme ecosystems and environmental challenges. Little is known about microbial distribution and community assembly in AMD lakes, especially in deep layers. Here, we investigated prokaryotic microbial diversity and community assembly along a depth profile in a stratified AMD lake using 16S rRNA gene sequencing combined with multivariate ecological and statistical methods. The water column in the AMD lake exhibited tight geochemical gradients, with more acidic surface water. Coupled with vertical hydrochemical variations, prokaryotic microbial community structure changed significantly, and was accompanied by increased diversity with depth. In the surface water, heterogeneous selection was the most important assembly process, whereas stochastic processes gained importance with depth. Meanwhile, microbial co-occurrences, especially positive interactions, were more frequent in the stressful surface water with reduced network modularity and keystone taxa. The pH was identified as the key driver of microbial diversity and community assembly along the vertical profile based on random forest analysis. Taken together, environmental effects dominated by acid stress drove the community assembly and species coexistence that underpinned the spatial scaling patterns of AMD microbiota in the lake. These findings demonstrate the distinct heterogeneity of local prokaryotic microbial community in AMD lake, and provide new insights into the mechanism to maintain microbial diversity in extreme acidic environments.
Collapse
Affiliation(s)
- Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Rui Shao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Guangcheng Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui, 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd, Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan, Anhui, 243000, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
8
|
Grettenberger CL, Hamilton TL. Metagenome-Assembled Genomes of Novel Taxa from an Acid Mine Drainage Environment. Appl Environ Microbiol 2021; 87:e0077221. [PMID: 34161177 PMCID: PMC8357290 DOI: 10.1128/aem.00772-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acid mine drainage (AMD) is a global problem in which iron sulfide minerals oxidize and generate acidic, metal-rich water. Bioremediation relies on understanding how microbial communities inhabiting an AMD site contribute to biogeochemical cycling. A number of studies have reported community composition in AMD sites from 16S rRNA gene amplicons, but it remains difficult to link taxa to function, especially in the absence of closely related cultured species or those with published genomes. Unfortunately, there is a paucity of genomes and cultured taxa from AMD environments. Here, we report 29 novel metagenome-assembled genomes from Cabin Branch, an AMD site in the Daniel Boone National Forest, Kentucky, USA. The genomes span 11 bacterial phyla and one archaeal phylum and include taxa that contribute to carbon, nitrogen, sulfur, and iron cycling. These data reveal overlooked taxa that contribute to carbon fixation in AMD sites as well as uncharacterized Fe(II)-oxidizing bacteria. These data provide additional context for 16S rRNA gene studies, add to our understanding of the taxa involved in biogeochemical cycling in AMD environments, and can inform bioremediation strategies. IMPORTANCE Bioremediating acid mine drainage requires understanding how microbial communities influence geochemical cycling of iron and sulfur and biologically important elements such as carbon and nitrogen. Research in this area has provided an abundance of 16S rRNA gene amplicon data. However, linking these data to metabolisms is difficult because many AMD taxa are uncultured or lack published genomes. Here, we present metagenome-assembled genomes from 29 novel AMD taxa and detail their metabolic potential. These data provide information on AMD taxa that could be important for bioremediation strategies, including taxa that are involved in cycling iron, sulfur, carbon, and nitrogen.
Collapse
Affiliation(s)
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- The Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
9
|
Ghosh UU, Ali H, Ghosh R, Kumar A. Bacterial streamers as colloidal systems: Five grand challenges. J Colloid Interface Sci 2021; 594:265-278. [PMID: 33765646 DOI: 10.1016/j.jcis.2021.02.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Bacteria can thrive in biofilms, which are intricately organized communities with cells encased in a self-secreted matrix of extracellular polymeric substances (EPS). Imposed hydrodynamic stresses can transform this active colloidal dispersion of bacteria and EPS into slender thread-like entities called streamers. In this perspective article, the reader is introduced to the world of such deformable 'bacteria-EPS' composites that are a subclass of the generic flow-induced colloidal structures. While bacterial streamers have been shown to form in a variety of hydrodynamic conditions (turbulent and creeping flows), its abiotic analogues have only been demonstrated in low Reynolds number (Re < 1) particle-laden polymeric flows. Streamers are relevant to a variety of situations ranging from natural formations in caves and river beds to clogging of biomedical devices and filtration membranes. A critical review of the relevant biophysical aspects of streamer formation phenomena and unique attributes of its material behavior are distilled to unveil five grand scientific challenges. The coupling between colloidal hydrodynamics, device geometry and streamer formation are highlighted.
Collapse
Affiliation(s)
- Udita U Ghosh
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Hessein Ali
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA.
| | - Aloke Kumar
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
10
|
Abstract
This paper evaluates the geochemical distribution and classification of global Acid Mine Drainage (AMD) sources. The geochemical compositions of AMD from 72 mine water sites in 18 countries across 6 continents were referenced from literature. The secondary data were analysed for statistical distribution and mine water classification against the Hill (1968) framework. The research found that the global mine water displayed geochemical concentrations within 2%, 11%, 5%, 9% and 8% of the aluminium, sulphate, acidity, total iron and zinc distribution ranges, respectively, at the 75th percentile. The study also found that 46%, 11.1% and 2.7% of mine water sites met the criteria for Class I, Class II and Class III of the Hill (1968) framework, respectively, while the remaining 40% of sites were omitted by the framework’s geochemical specifications. The results were used to optimise the Hill (1968) framework. The revised framework was proposed for effective AMD geochemical classification, regulation and remediation.
Collapse
|
11
|
Holanda R, Johnson DB. Isolation and characterization of a novel acidophilic zero-valent sulfur- and ferric iron-respiring Firmicute. Res Microbiol 2020; 171:215-221. [DOI: 10.1016/j.resmic.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/17/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
|
12
|
Grettenberger CL, Havig JR, Hamilton TL. Metabolic diversity and co-occurrence of multiple Ferrovum species at an acid mine drainage site. BMC Microbiol 2020; 20:119. [PMID: 32423375 PMCID: PMC7236192 DOI: 10.1186/s12866-020-01768-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ferrovum spp. are abundant in acid mine drainage sites globally where they play an important role in biogeochemical cycling. All known taxa in this genus are Fe(II) oxidizers. Thus, co-occurring members of the genus could be competitors within the same environment. However, we found multiple, co-occurring Ferrovum spp. in Cabin Branch, an acid mine drainage site in the Daniel Boone National Forest, KY. RESULTS Here we describe the distribution of Ferrovum spp. within the Cabin Branch communities and metagenome assembled genomes (MAGs) of two new Ferrovum spp. In contrast to previous studies, we recovered multiple 16S rRNA gene sequence variants suggesting the commonly used 97% cutoff may not be appropriate to differentiate Ferrovum spp. We also retrieved two nearly-complete Ferrovum spp. genomes from metagenomic data. The genomes of these taxa differ in several key ways relating to nutrient cycling, motility, and chemotaxis. CONCLUSIONS Previously reported Ferrovum genomes are also diverse with respect to these categories suggesting that the genus Ferrovum contains substantial metabolic diversity. This diversity likely explains how the members of this genus successfully co-occur in Cabin Branch and why Ferrovum spp. are abundant across geochemical gradients.
Collapse
Affiliation(s)
| | - Jeff R Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, 218 Cargill Building, St. Paul, MN, 55108, USA.
- The BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
13
|
In situ metabolic activities of uncultivated Ferrovum sp. CARN8 evidenced by metatranscriptomic analysis. Res Microbiol 2020; 171:37-43. [DOI: 10.1016/j.resmic.2019.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/23/2022]
|
14
|
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies. Curr Microbiol 2019; 77:657-674. [DOI: 10.1007/s00284-019-01771-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/09/2019] [Indexed: 11/27/2022]
|
15
|
Lukhele T, Selvarajan R, Nyoni H, Mamba BB, Msagati TAM. Diversity and functional profile of bacterial communities at Lancaster acid mine drainage dam, South Africa as revealed by 16S rRNA gene high-throughput sequencing analysis. Extremophiles 2019; 23:719-734. [PMID: 31520125 DOI: 10.1007/s00792-019-01130-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022]
Abstract
This study surveyed physicochemical properties and bacterial community structure of water and sediments from an acid mine drainage (AMD) dam in South Africa. High-throughput sequence analysis revealed low diversity bacterial communities affiliated within 8 dominant phyla; Acidobacteria, Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, Proteobacteria, Saccharibacteria, and ca. TM6_(Dependentiae). Acidiphilium spp. which are common AMD inhabitants but rarely occur as dominant taxa, were the most abundant in both AMD water and sediments. Other groups making up the community are less common AMD inhabitants; Acidibacillus, Acidibacter, Acidobacterium, Acidothermus, Legionella, Metallibacterium, Mycobacterium, as well as elusive taxa (Saccharibacteria, ca. TM6_(Dependentiae) and ca. JG37-AG-4). Although most of the taxa are shared between sediment and water communities, alpha diversity indices indicate a higher species richness in the sediments. From canonical correspondence analysis, DOC, Mn, Cu, Cr, Al, Fe, Ca were identified as important determinants of community structure in water, compared to DOC, Ca, Cu, Fe, Zn, Mg, K, Mn, Al, sulfates, and nitrates in sediments. Predictive functional profiling recovered genes associated with bacterial growth and those related to survival and adaptation to the harsh environmental conditions. Overall, the study reports on a distinct AMD bacterial community and highlights sediments as microhabitats with higher species richness than water.
Collapse
Affiliation(s)
- Thabile Lukhele
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Ramganesh Selvarajan
- College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Hlengilizwe Nyoni
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa
| | - Bheki Brilliance Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa.,State Key Laboratory of Separation and Membranes, Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus Alfred Makudali Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science Engineering and Technology, University of South Africa, Science Campus, Johannesburg, 1709, South Africa.
| |
Collapse
|
16
|
Park I, Tabelin CB, Jeon S, Li X, Seno K, Ito M, Hiroyoshi N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. CHEMOSPHERE 2019; 219:588-606. [PMID: 30554047 DOI: 10.1016/j.chemosphere.2018.11.053] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 05/28/2023]
Abstract
Acid mine/rock drainage (AMD/ARD), effluents with low pH and high concentrations of hazardous and toxic elements generated when sulfide-rich wastes are exposed to the environment, is considered as a serious environmental problem encountered by the mining and mineral processing industries around the world. Remediation options like neutralization, adsorption, ion exchange, membrane technology, biological mediation, and electrochemical approach have been developed to reduce the negative environmental impacts of AMD on ecological systems and human health. However, these techniques require the continuous supply of chemicals and energy, expensive maintenance and labor cost, and long-term monitoring of affected ecosystems until AMD generation stops. Unfortunately, the formation of AMD could persist for hundreds or even thousands of years, so these approaches are both costly and unsustainable. Recently, two alternative strategies for the management of AMD and mine tailings are gaining much attention: (1) prevention techniques, and (2) mine waste recycling. In this review, recent advances in AMD prevention techniques like oxygen barriers, utilization of bactericides, co-disposal and blending, and passivation of sulfide minerals are discussed. In addition, recycling of mine tailings as construction and geopolymer materials to reduce the amounts of wastes for disposal are introduced.
Collapse
Affiliation(s)
- Ilhwan Park
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan.
| | - Carlito Baltazar Tabelin
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Japan
| | - Sanghee Jeon
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Xinlong Li
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Kensuke Seno
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Japan
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Japan
| |
Collapse
|
17
|
Korzhenkov AA, Toshchakov SV, Bargiela R, Gibbard H, Ferrer M, Teplyuk AV, Jones DL, Kublanov IV, Golyshin PN, Golyshina OV. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. MICROBIOME 2019; 7:11. [PMID: 30691532 PMCID: PMC6350386 DOI: 10.1186/s40168-019-0623-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND The current view suggests that in low-temperature acidic environments, archaea are significantly less abundant than bacteria. Thus, this study of the microbiome of Parys Mountain (Anglesey, UK) sheds light on the generality of this current assumption. Parys Mountain is a historically important copper mine and its acid mine drainage (AMD) water streams are characterised by constant moderate temperatures (8-18 °C), extremely low pH (1.7) and high concentrations of soluble iron and other metal cations. RESULTS Metagenomic and SSU rRNA amplicon sequencing of DNA from Parys Mountain revealed a significant proportion of archaea affiliated with Euryarchaeota, which accounted for ca. 67% of the community. Within this phylum, potentially new clades of Thermoplasmata were overrepresented (58%), with the most predominant group being "E-plasma", alongside low-abundant Cuniculiplasmataceae, 'Ca. Micrarchaeota' and 'Terrestrial Miscellaneous Euryarchaeal Group' (TMEG) archaea, which were phylogenetically close to Methanomassilicoccales and clustered with counterparts from acidic/moderately acidic settings. In the sediment, archaea and Thermoplasmata contributed the highest numbers in V3-V4 amplicon reads, in contrast with the water body community, where Proteobacteria, Nitrospirae, Acidobacteria and Actinobacteria outnumbered archaea. Cultivation efforts revealed the abundance of archaeal sequences closely related to Cuniculiplasma divulgatum in an enrichment culture established from the filterable fraction of the water sample. Enrichment cultures with unfiltered samples showed the presence of Ferrimicrobium acidiphilum, C. divulgatum, 'Ca. Mancarchaeum acidiphilum Mia14', 'Ca. Micrarchaeota'-related and diverse minor (< 2%) bacterial metagenomic reads. CONCLUSION Contrary to expectation, our study showed a high abundance of archaea in this extremely acidic mine-impacted environment. Further, archaeal populations were dominated by one particular group, suggesting that they are functionally important. The prevalence of archaea over bacteria in these microbiomes and their spatial distribution patterns represents a novel and important advance in our understanding of acidophile ecology. We also demonstrated a procedure for the specific enrichment of cell wall-deficient members of the archaeal component of this community, although the large fraction of archaeal taxa remained unculturable. Lastly, we identified a separate clustering of globally occurring acidophilic members of TMEG that collectively belong to a distinct order within Thermoplasmata with yet unclear functional roles in the ecosystem.
Collapse
Affiliation(s)
- Aleksei A. Korzhenkov
- National Research Center “Kurchatov Institute”, Akademika Kurchatova sq., 1, Moscow, 123182 Russia
| | - Stepan V. Toshchakov
- Winogradsky Institute of Microbiology, Federal Research Center for Biotechnology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312 Russia
| | - Rafael Bargiela
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW UK
| | - Huw Gibbard
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW UK
| | | | - Alina V. Teplyuk
- National Research Center “Kurchatov Institute”, Akademika Kurchatova sq., 1, Moscow, 123182 Russia
| | - David L. Jones
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW UK
- UWA School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009 Australia
| | - Ilya V. Kublanov
- Winogradsky Institute of Microbiology, Federal Research Center for Biotechnology, Russian Academy of Sciences, Prospect 60-Letiya Oktyabrya 7/2, Moscow, 117312 Russia
| | - Peter N. Golyshin
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW UK
- Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor, LL57 2UW UK
| | - Olga V. Golyshina
- School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, LL57 2UW UK
- Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor, LL57 2UW UK
| |
Collapse
|
18
|
Santos AL, Johnson DB. Design and Application of a Low pH Upflow Biofilm Sulfidogenic Bioreactor for Recovering Transition Metals From Synthetic Waste Water at a Brazilian Copper Mine. Front Microbiol 2018; 9:2051. [PMID: 30214439 PMCID: PMC6125330 DOI: 10.3389/fmicb.2018.02051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023] Open
Abstract
A sulfidogenic bioreactor, operated at low pH (4–5), was set up and used to remove transition metals (copper, nickel, cobalt, and zinc) from a synthetic mine water, based on the chemistry of a moderately acidic (pH 5) drainage stream at an operating copper mine in Brazil. The module was constructed as an upflow biofilm reactor, with microorganisms immobilized on porous glass beads, and was operated continuously for 462 days, during which time the 2 L bioreactor processed >2,000 L of synthetic mine water. The initial treatment involved removing copper (the most abundant metal present) off-line in a stream of H2S-containing gas generated by the bioreactor, which caused the synthetic mine water pH to fall to 2.1. The copper-free water was then amended with glycerol (the principal electron donor), yeast extract and basal salts, and pumped directly into the bioreactor where the other three transition metals were precipitated (also as sulfides), concurrent with increased solution pH. Although some acetate was generated, most of the glycerol fed to the bioreactor was oxidized to carbon dioxide, and was coupled to the reduction of sulfate to hydrogen sulfide. No archaea or eukaryotes were detected in the bioreactor microbial community, which was dominated by acidophilic sulfate-reducing Firmicutes (Peptococcaceae strain CEB3 and Desulfosporosinus acididurans); facultatively anaerobic non-sulfidogens (Acidithiobacillus ferrooxidans and Actinobacterium strain AR3) were also found in small relative abundance. This work demonstrated how a single low pH sulfidogenic bioreactor can be used to remediate a metal-rich mine water, and to facilitate the recovery (and therefore recycling) of target metals. The system was robust, and was operated empirically by means of pH control. Comparison of costs of the main consumables (glycerol and yeast extract) and the values of the metals recovered showed a major excess of the latter, supporting the view that sulfidogenic biotechnology can have significant economic as well as environmental advantages over current approaches used to remediate mine waters which produce secondary toxic wastes and fail to recover valuable metals.
Collapse
Affiliation(s)
- Ana L Santos
- College of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - D Barrie Johnson
- College of Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
19
|
Crane RA, Sapsford DJ. Towards "Precision Mining" of wastewater: Selective recovery of Cu from acid mine drainage onto diatomite supported nanoscale zerovalent iron particles. CHEMOSPHERE 2018; 202:339-348. [PMID: 29574387 DOI: 10.1016/j.chemosphere.2018.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
This paper introduces the concept of 'Precision Mining' of metals which can be defined as a process for the selective in situ uptake of a metal from a material or media, with subsequent retrieval and recovery of the target metal. In order to demonstrate this concept nanoscale zerovalent iron (nZVI) was loaded onto diatomaceous earth (DE) and tested for the selective uptake of Cu from acid mine drainage (AMD) and subsequent release. Batch experiments were conducted using the AMD and nZVI-DE at 4.0-16.0 g/L. Results demonstrate nZVI-DE as highly selective for Cu removal with >99% uptake recorded after 0.25 h when using nZVI-DE concentrations ≥12.0 g/L, despite appreciable concentrations of numerous other metals in the AMD, namely: Co, Ni, Mn and Zn. Cu uptake was maintained in excess of 4 and 24 h when using nZVI-DE concentrations of 12.0 and 16.0 g/L respectively. Near-total Cu release from the nZVI-DE was then recorded and attributed to the depletion of the nZVI component and the subsequent Eh, DO and pH recovery. This novel Cu uptake and release mechanism, once appropriately engineered, holds great promise as a novel 'Precision Mining' process for the rapid and selective Cu recovery from acidic wastewater, process effluents and leach liquors.
Collapse
Affiliation(s)
- R A Crane
- Camborne School of Mines, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
| | - D J Sapsford
- School of Engineering, Cardiff University, Queen's Building, The Parade, Cardiff, CF24 3AA, United Kingdom
| |
Collapse
|
20
|
Crane RA, Sapsford DJ. Selective formation of copper nanoparticles from acid mine drainage using nanoscale zerovalent iron particles. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:252-265. [PMID: 29329008 DOI: 10.1016/j.jhazmat.2017.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Nanoscale zerovalent iron (nZVI) has been investigated for the selective formation of Cu nanoparticles from acid mine drainage (AMD) taken from a legacy mine site in the UK. Batch experiments were conducted containing unbuffered (pH 2.67 at t = 0) and pH buffered (pH < 3.1) AMD which were exposed to nZVI at 0.1-2.0 g/L. Results demonstrate that nZVI is selective for Cu, Cd and Al removal (>99.9% removal of all metals within 1 h when nZVI ≥ 1.0 g/L) from unbuffered AMD despite the coexistent of numerous other metals in the AMD, namely: Na, Ca, Mg, K, Mn and Zn. An acidic pH buffer enabled similarly high Cu removal but maximum removal of only <1.5% and <0.5% Cd and Al respectively. HRTEM-EDS confirmed the formation of discrete spherical nanoparticles comprised of up to 68% wt. Cu, with a relatively narrow size distribution (typically 20-100 nm diameter). XPS confirmed such nanoparticles as containing Cu°, with the Cu removal mechanism therefore likely via cementation with Fe°. Overall the results demonstrate nZVI as effective for the one-pot and selective formation of Cu°-bearing nanoparticles from acidic wastewater, with the technique therefore potentially highly useful for the selective upcycling of dissolved Cu in wastewater into high value nanomaterials.
Collapse
Affiliation(s)
- R A Crane
- Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
| | - D J Sapsford
- School of Engineering, Cardiff University, Queen's Building, The Parade, Cardiff, CF24 3AA, United Kingdom
| |
Collapse
|
21
|
Bao Y, Guo C, Lu G, Yi X, Wang H, Dang Z. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:647-657. [PMID: 29103647 DOI: 10.1016/j.scitotenv.2017.10.273] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Fe(III) hydroxysulfate minerals are secondary minerals commonly found in acid mine drainage (AMD) sites and have a major impact on water and soil quality in these environments. While previous studies showed that the Fe(III) hydroxysulfate mineral transformation could be mediated by some bacterial strains under laboratory conditions, the role of indigenous microbial activity in Fe(III) hydroxysulfate mineral transformation in natural environment has received little attention. In this study, microcosms were constructed with AMD-affected river water and sediment from the Dabaoshan Mine that was either left unamended or enriched with nutrients (lactate, nitrogen, and phosphorus (LNP)) and biosynthetic minerals (schwertmannite or jarosite). The results show that microbial activity played a decisive role in the mineralogical transformation of schwertmannite/jarosite in the AMD-contaminated site when organic carbon was available. The accumulation of Fe(II) and sulfide in microcosms amended with LNP indicates that schwertmannite/jarosite transformation is mediated by microbial reduction. XRD, SEM and FTIR analyses suggest that schwertmannite was completely transformed to goethite in the Sch-LNP microcosms at the end of their incubation. Jarosite in the Jar-LNP microcosms was also transformed to goethite, but at a much slower rate than schwertmannite. Bacterial community analysis reveals that the stimulated indigenous bacteria promote the mineralogical transformation of schwertmannite/jarosite. Most of these bacteria, including Geobacter, Desulfosporosinus, Geothrix, Desulfurispora, Desulfovibrio, and Anaeromyxobacter, are known to reduce iron and/or sulfate. The mineralogical transformation of schwertmannite and jarosite exerts significant control on the geochemistry of AMD-contaminated systems.
Collapse
Affiliation(s)
- Yanping Bao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Han Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
22
|
Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 2018; 43:139-147. [PMID: 29414445 DOI: 10.1016/j.mib.2018.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/23/2022]
Abstract
Extremely acidic environments have global distribution and can have natural or, increasingly, anthropogenic origins. Extreme acidophiles grow optimally at pH 3 or less, have multiple strategies for tolerating stresses that accompany high levels of acidity and are scattered in all three domains of the tree of life. Metagenomic studies have expanded knowledge of the diversity of extreme acidophile communities, their ecological networks and their metabolic potentials, both confirmed and inferred. High resolution compositional and functional profiling of these microbiomes have begun to reveal spatial diversity patterns at global, regional, local, zonal and micro-scales. Future integration of genomic and other meta-omic data will offer new opportunities to utilize acidic microbiomes and to engineer beneficial interactions within them in biotechnologies.
Collapse
|
23
|
Thavamani P, Samkumar RA, Satheesh V, Subashchandrabose SR, Ramadass K, Naidu R, Venkateswarlu K, Megharaj M. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:495-505. [PMID: 28688926 DOI: 10.1016/j.envpol.2017.06.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/12/2017] [Accepted: 06/17/2017] [Indexed: 05/11/2023]
Abstract
Derelict mines pose potential risks to environmental health. Several factors such as soil structure, organic matter, and nutrient content are the greatly affected qualities in mined soils. Soil microbial communities are an important element for successful reclamation because of their major role in nutrient cycling, plant establishment, geochemical transformations, and soil formation. Yet, microorganisms generally remain an undervalued asset in mined sites. The microbial diversity in derelict mine sites consists of diverse species belonging to four key phyla: Proteobacteria, Acidobacteria, Firmicutes, and Bacteroidetes. The activity of plant symbiotic microorganisms including root-colonizing rhizobacteria and ectomycorrhizal fungi of existing vegetation in the mined sites is very high since most of these microbes are extremophiles. This review outlines the importance of microorganisms to soil health and the rehabilitation of derelict mines and how microbial activity and diversity can be exploited to better plan the soil rehabilitation. Besides highlighting the major breakthroughs in the application of microorganisms for mined site reclamation, we provide a critical view on plant-microbiome interactions to improve revegetation at the mined sites. Also, the need has been emphasized for deciphering the molecular mechanisms of adaptation and resistance of rhizosphere and non-rhizosphere microbes in abandoned mine sites, understanding their role in remediation, and subsequent harnessing of their potential to pave the way in future rehabilitation strategies for mined sites.
Collapse
Affiliation(s)
- Palanisami Thavamani
- Global Centre for Environmental Remediation, University of Newcastle, Australia.
| | - R Amos Samkumar
- ICAR- National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India
| | - Viswanathan Satheesh
- ICAR- National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India
| | | | - Kavitha Ramadass
- Future Industries Institute, University of South Australia, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | | |
Collapse
|
24
|
Auld RR, Mykytczuk NC, Leduc LG, Merritt TJ. Seasonal variation in an acid mine drainage microbial community. Can J Microbiol 2017; 63:137-152. [DOI: 10.1139/cjm-2016-0215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Environmental oxidation and microbial metabolism drive production of acid mine drainage (AMD). Understanding changes in the microbial community, due to geochemical and seasonal characteristics, is fundamental to AMD monitoring and remediation. Using direct sequencing of the 16S and 18S rRNA genes to identify bacterial, archaeal, and eukaryotic members of the microbial community at an AMD site in Northern Ontario, Canada, we found a dynamic community varying significantly across winter and summer sampling times. Community composition was correlated with physical and chemical properties, including water temperature, pH, conductivity, winter ice thickness, and metal concentrations. Within Bacteria, Acidithiobacillus was the dominant genus during winter (11%–57% of sequences) but Acidiphilium was dominant during summer (47%–87%). Within Eukarya, Chrysophyceae (1.5%–94%) and Microbotrymycetes (8%–92%) dominated the winter community, and LKM11 (4%–62%) and Chrysophyceae (25%–87%) the summer. There was less diversity and variability within the Archaea, with similar summer and winter communities mainly comprising Thermoplasmata (33%–64%) and Thermoprotei (5%–20%) classes but also including a large portion of unclassified reads (∼40%). Overall, the active AMD community varied significantly between winter and summer, with changing community profiles closely correlated to specific differences in AMD geochemical and physical properties, including pH, water temperature, ice thickness, and sulfate and metal concentrations.
Collapse
Affiliation(s)
- Ryan R. Auld
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | | | - Leo G. Leduc
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Thomas J.S. Merritt
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
25
|
Christel S, Fridlund J, Watkin EL, Dopson M. Acidithiobacillus ferrivorans SS3 presents little RNA transcript response related to cold stress during growth at 8 °C suggesting it is a eurypsychrophile. Extremophiles 2016; 20:903-913. [PMID: 27783177 PMCID: PMC5085989 DOI: 10.1007/s00792-016-0882-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022]
Abstract
Acidithiobacillus ferrivorans is an acidophilic bacterium that represents a substantial proportion of the microbial community in a low temperature mining waste stream. Due to its ability to grow at temperatures below 15 °C, it has previously been classified as 'psychrotolerant'. Low temperature-adapted microorganisms have strategies to grow at cold temperatures such as the production of cold acclimation proteins, DEAD/DEAH box helicases, and compatible solutes plus increasing their cellular membrane fluidity. However, little is known about At. ferrivorans adaptation strategies employed during culture at its temperature extremes. In this study, we report the transcriptomic response of At. ferrivorans SS3 to culture at 8 °C compared to 20 °C. Analysis revealed 373 differentially expressed genes of which, the majority were of unknown function. Only few changes in transcript counts of genes previously described to be cold adaptation genes were detected. Instead, cells cultured at cold (8 °C) altered the expression of a wide range of genes ascribed to functions in transcription, translation, and energy production. It is, therefore, suggested that a temperature of 8 °C imposed little cold stress on At. ferrivorans, underlining its adaptation to growth in the cold as well as suggesting it should be classified as a 'eurypsychrophile'.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Elizabeth L Watkin
- School of Biomedical Sciences, Curtin University, Perth, 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
26
|
Jones RM, Johnson DB. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8239-8245. [PMID: 27377871 DOI: 10.1021/acs.est.6b02141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Iron-rich, acidic wastewaters are commonplace pollutants associated with metal and coal mining. Continuous-flow bioreactors were commissioned and tested for their capacities to oxidize ferrous iron in synthetic and actual acid mine drainage waters using (initially) pure cultures of the recently described acidophilic, iron-oxidizing heterotrophic bacterium Acidithrix ferrooxidans grown in the presence of glucose and yeast extract. The bioreactors became rapidly colonized by this bacterium, which formed macroscopic streamer growths in the flowing waters. Over 97% of ferrous iron in pH 2.0-2.2 synthetic mine water was oxidized (at up to 225 mg L(-1) h(-1)) at dilution rates (D) of 0.6 h(-1). Rates of iron oxidation decreased with pH but were still significant, with influent liquors as low as pH 1.37. When fed with actual mine water, >90% of ferrous iron was oxidized at D values of 0.4 h(-1), and microbial communities within the bioreactors changed over time, with Atx. ferrooxidans becoming increasingly displaced by the autotrophic iron-oxidizing acidophiles Ferrovum myxofaciens, Acidithiobacillus ferrivorans, and Leptospirillum ferrooxidans (which were all indigenous to the mine water), although this did not have a negative impact on net ferrous-iron oxidation. The results confirmed the potential of using a heterotrophic acidophile to facilitate the rapid commissioning of iron-oxidizing bioreactors and illustrated how microbial communities within them can evolve without compromising the performances of the bioreactors.
Collapse
Affiliation(s)
- Rose M Jones
- College of Natural Sciences, Bangor University , Deiniol Road, Bangor LL57 2UW, United Kingdom
| | - D Barrie Johnson
- College of Natural Sciences, Bangor University , Deiniol Road, Bangor LL57 2UW, United Kingdom
| |
Collapse
|
27
|
Falteisek L, Duchoslav V, Čepička I. Substantial Variability of Multiple Microbial Communities Collected at Similar Acidic Mine Water Outlets. MICROBIAL ECOLOGY 2016; 72:163-174. [PMID: 27059740 DOI: 10.1007/s00248-016-0760-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Deep sequencing of prokaryotic 16S rDNA regularly reveals thousands of microbial species thriving in many common habitats. It is still unknown how this huge microbial diversity, including many potentially competing organisms, may persist at a single site. One of plausible hypotheses is that a large number of spatially separated microcommunities exist within each complex habitat. Smaller subset of the species may exist in each microcommunity and actually interact with each other. We sampled two groups of microbial stalactites growing at a single acidic mine drainage outlet as a model of multiplicated, low-complexity microhabitat. Samples from six other sites were added for comparison. Both tRFLP and 16S rDNA pyrosequencing showed that microbial communities containing 6 to 51 species-level operational taxonomic units (OTU) inhabited all stalactites. Interestingly, most OTUs including the highly abundant ones unpredictably alternated regardless of physical and environmental distance of the stalactites. As a result, the communities clustered independently on sample site and other variables when using both phylogenetic dissimilarity and OTU abundance metrics. Interestingly, artificial communities generated by pooling the biota of several adjacent stalactites together clustered by the locality more strongly than when the stalactites were analyzed separately. The most probable interpretation is that each stalactite contains likely random selection from the pool of plausible species. Such degree of stochasticity in assembly of extremophilic microbial communities is significantly greater than commonly proposed and requires caution when interpreting microbial diversity.
Collapse
Affiliation(s)
- Lukáš Falteisek
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic.
| | - Vojtěch Duchoslav
- Department of Ecology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic
| |
Collapse
|
28
|
Sağlam ES, Akçay M, Çolak DN, İnan Bektaş K, Beldüz AO. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent. Extremophiles 2016; 20:673-85. [PMID: 27338270 DOI: 10.1007/s00792-016-0857-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/14/2016] [Indexed: 11/27/2022]
Abstract
The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.
Collapse
Affiliation(s)
- Emine Selva Sağlam
- Department of Geology, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Miğraç Akçay
- Department of Geology, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Dilşat Nigar Çolak
- Bulancak Kadir Karabaş School of Applied Sciences, Giresun University, Giresun, Turkey
| | - Kadriye İnan Bektaş
- Department of Molecular Biology and Genetic, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ali Osman Beldüz
- Department of Biology, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
29
|
Sun W, Xiao E, Krumins V, Dong Y, Xiao T, Ning Z, Chen H, Xiao Q. Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Appl Microbiol Biotechnol 2016; 100:8523-35. [PMID: 27277134 DOI: 10.1007/s00253-016-7653-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/09/2023]
Abstract
A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities, suggesting that the microbial communities are shaped by three major environmental parameters (i.e., Fe, pH, and TOC). These findings were beneficial to a better understanding of natural attenuation of AMD.
Collapse
Affiliation(s)
- Weimin Sun
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, 99 Lincheng Road West, Guiyang, 550081, Guizhou Province, People's Republic of China.,Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA.,Guangdong Institute of Eco-environment and Soil Sciences, Guangzhou, 510650, China
| | - Enzong Xiao
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, 99 Lincheng Road West, Guiyang, 550081, Guizhou Province, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Yiran Dong
- Department of Geology, University of Illinois-Urbana Champaign, Urbana, IL, 61801, USA
| | - Tangfu Xiao
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, 99 Lincheng Road West, Guiyang, 550081, Guizhou Province, People's Republic of China. .,Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, 99 Lincheng Road West, Guiyang, 550081, Guizhou Province, People's Republic of China
| | - Haiyan Chen
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, 99 Lincheng Road West, Guiyang, 550081, Guizhou Province, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingxiang Xiao
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, 99 Lincheng Road West, Guiyang, 550081, Guizhou Province, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Ullrich SR, González C, Poehlein A, Tischler JS, Daniel R, Schlömann M, Holmes DS, Mühling M. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile "Ferrovum". Front Microbiol 2016; 7:797. [PMID: 27303384 PMCID: PMC4886054 DOI: 10.3389/fmicb.2016.00797] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023] Open
Abstract
Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed diversification.
Collapse
Affiliation(s)
- Sophie R Ullrich
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems BiotechnologySantiago, Chile
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Georg-August Universität Göttingen Göttingen, Germany
| | - Judith S Tischler
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Georg-August Universität Göttingen Göttingen, Germany
| | - Michael Schlömann
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Martin Mühling
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| |
Collapse
|
31
|
Christel S, Fridlund J, Buetti-Dinh A, Buck M, Watkin EL, Dopson M. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans. FEMS Microbiol Lett 2016; 363:fnw057. [PMID: 26956550 DOI: 10.1093/femsle/fnw057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.
Collapse
Affiliation(s)
- Stephan Christel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Antoine Buetti-Dinh
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| | - Moritz Buck
- National Bioinformatics Infrastructure Sweden and Evolutionary Biology Center, Uppsala University, 751 05 Uppsala, Sweden
| | - Elizabeth L Watkin
- CHIRI Biosciences, School of Biomedical Sciences, Curtin University, Perth 6845, Australia
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
32
|
Zhou C, Ontiveros-Valencia A, Wang Z, Maldonado J, Zhao HP, Krajmalnik-Brown R, Rittmann BE. Palladium Recovery in a H2-Based Membrane Biofilm Reactor: Formation of Pd(0) Nanoparticles through Enzymatic and Autocatalytic Reductions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2546-2555. [PMID: 26883809 DOI: 10.1021/acs.est.5b05318] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recovering palladium (Pd) from waste streams opens up the possibility of augmenting the supply of this important catalyst. We evaluated Pd reduction and recovery as a novel application of a H2-based membrane biofilm reactor (MBfR). At steady states, over 99% of the input soluble Pd(II) was reduced through concomitant enzymatic and autocatalytic processes at acidic or near neutral pHs. Nanoparticulate Pd(0), at an average crystallite size of 10 nm, was recovered with minimal leaching and heterogeneously associated with microbial cells and extracellular polymeric substances in the biofilm. The dominant phylotypes potentially responsible for Pd(II) reduction at circumneutral pH were denitrifying β-proteobacteria mainly consisting of the family Rhodocyclaceae. Though greatly shifted by acidic pH, the biofilm microbial community largely bounced back when the pH was returned to 7 within 2 weeks. These discoveries infer that the biofilm was capable of rapid adaptive evolution to stressed environmental change, and facilitated Pd recovery in versatile ways. This study demonstrates the promise of effective microbially driven Pd recovery in a single MBfR system that could be applied for the treatment of the waste streams, and it documents the role of biofilms in this reduction and recovery process.
Collapse
Affiliation(s)
- Chen Zhou
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Aura Ontiveros-Valencia
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Zhaocheng Wang
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University , Changsha, China
| | - Juan Maldonado
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou, China
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
33
|
Florence K, Sapsford D, Johnson D, Kay C, Wolkersdorfer C. Iron-mineral accretion from acid mine drainage and its application in passive treatment. ENVIRONMENTAL TECHNOLOGY 2016; 37:1428-40. [PMID: 26675674 PMCID: PMC4867868 DOI: 10.1080/09593330.2015.1118558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study demonstrates substantial removal of iron (Fe) from acid mine drainage (pH ≈3) in a passive vertical flow reactor (VFR) with an equivalent footprint of 154 m(2) per L/s mine water and residence times of >23 h. Average Fe removal rate was 67% with a high of 85% over the 10-month trial. The fraction of Fe passing a 0.22 µm filter (referred to here as Fe-filt) was seen to be removed in the VFR even when Fe(II) was absent, indicating that the contribution of microbial Fe(II) oxidation and precipitation was not the dominant removal mechanism in the VFR. Removal rates of Fe-filt in the VFR were up to 70% in residence times as low as 8 h compared with laboratory experiments where much smaller changes in Fe-filt were observed over 60 h. Centrifugation indicated that 80-90% of the influent Fe had particle sizes <35 nm. Together with analyses and geochemical modelling, this suggests that the Fe-filt fraction exists as either truly aqueous (but oversaturated) Fe(III) or nanoparticulate Fe(III) and that this metastability persists. When the water was contacted with VFR sludge, the Fe-filt fraction was destabilized, leading to an appreciably higher removal of this fraction. Heterogeneous precipitation and/or aggregation of nanoparticulate Fe(III) precipitates are considered predominant removal mechanisms. Microbial analyses of the mine water revealed the abundance of extracellular polymeric substance-generating Fe-oxidizing bacterium 'Ferrovum myxofaciens', which may aid the removal of iron and explain the unusual appearance and physical properties of the sludge.
Collapse
Affiliation(s)
- K. Florence
- Cardiff School of Engineering, Cardiff University, Cardiff, UK
| | - D.J. Sapsford
- Cardiff School of Engineering, Cardiff University, Cardiff, UK
- D.J. Sapsford
| | - D.B. Johnson
- School of Biological Sciences, Bangor University, Bangor, Gwynedd , UK
| | - C.M. Kay
- School of Biological Sciences, Bangor University, Bangor, Gwynedd , UK
| | - C. Wolkersdorfer
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology (TUT), Pretoria, South Africa
- Laboratory of Green Chemistry, Lappeenranta University of Technology (LUT), Mikkeli, Finland
| |
Collapse
|
34
|
Fabisch M, Freyer G, Johnson CA, Büchel G, Akob DM, Neu TR, Küsel K. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge. GEOBIOLOGY 2016; 14:68-90. [PMID: 26407813 DOI: 10.1111/gbi.12162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Heavy metal-contaminated, pH 6 mine water discharge created new streams and iron-rich terraces at a creek bank in a former uranium-mining area near Ronneburg, Germany. The transition from microoxic groundwater with ~5 mm Fe(II) to oxic surface water may provide a suitable habitat for microaerobic iron-oxidizing bacteria (FeOB). In this study, we investigated the potential contribution of these FeOB to iron oxidation and metal retention in this high-metal environment. We (i) identified and quantified FeOB in water and sediment at the outflow, terraces, and creek, (ii) studied the composition of biogenic iron oxides (Gallionella-like twisted stalks) with scanning and transmission electron microscopy (SEM, TEM) as well as confocal laser scanning microscopy (CLSM), and (iii) examined the metal distribution in sediments. Using quantitative PCR, a very high abundance of FeOB was demonstrated at all sites over a 6-month study period. Gallionella spp. clearly dominated the communities, accounting for up to 88% of Bacteria, with a minor contribution of other FeOB such as Sideroxydans spp. and 'Ferrovum myxofaciens'. Classical 16S rRNA gene cloning showed that 96% of the Gallionella-related sequences had ≥ 97% identity to the putatively metal-tolerant 'Gallionella capsiferriformans ES-2', in addition to known stalk formers such as Gallionella ferruginea and Gallionellaceae strain R-1. Twisted stalks from glass slides incubated in water and sediment were composed of the Fe(III) oxyhydroxide ferrihydrite, as well as polysaccharides. SEM and scanning TEM-energy-dispersive X-ray spectroscopy revealed that stalk material contained Cu and Sn, demonstrating the association of heavy metals with biogenic iron oxides and the potential for metal retention by these stalks. Sequential extraction of sediments suggested that Cu (52-61% of total sediment Cu) and other heavy metals were primarily bound to the iron oxide fractions. These results show the importance of 'G. capsiferriformans' and biogenic iron oxides in slightly acidic but highly metal-contaminated freshwater environments.
Collapse
MESH Headings
- Aerobiosis
- Biota
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Ferric Compounds/analysis
- Gallionellaceae/chemistry
- Gallionellaceae/classification
- Gallionellaceae/genetics
- Gallionellaceae/isolation & purification
- Germany
- Hydrogen-Ion Concentration
- Iron/metabolism
- Metals, Heavy/analysis
- Microscopy, Confocal
- Microscopy, Electrochemical, Scanning
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Oxidation-Reduction
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Water/chemistry
- Water Microbiology
Collapse
Affiliation(s)
- M Fabisch
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - G Freyer
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - C A Johnson
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - G Büchel
- Institute of Geosciences, Friedrich Schiller University Jena, Jena, Germany
| | - D M Akob
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
- U.S. Geological Survey, Reston, VA, USA
| | - T R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research Leipzig-Halle - UFZ, Magdeburg, Germany
| | - K Küsel
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
35
|
Microbial Communities in Sediments in Acidic, Metal-Rich Mine Lakes: Results from a Study in South-West Spain. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/amr.1130.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cueva de la Mora and Guadiana are two acidic mine pit lake in the Iberian Pyrite Belt (south-west Spain) that exhibit depth-related stratification, which is in turn reflected in the bacterial community population the different layers. Here we describe the microbial communities present in samples of sediments located close to the surface and deep within the lakes, which show interesting contrasts to planktonic communities.
Collapse
|
36
|
Mori JF, Lu S, Händel M, Totsche KU, Neu TR, Iancu VV, Tarcea N, Popp J, Küsel K. Schwertmannite formation at cell junctions by a new filament-forming Fe(II)-oxidizing isolate affiliated with the novel genus Acidithrix. MICROBIOLOGY-SGM 2015; 162:62-71. [PMID: 26506965 DOI: 10.1099/mic.0.000205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new acidophilic iron-oxidizing strain (C25) belonging to the novel genus Acidithrix was isolated from pelagic iron-rich aggregates ('iron snow') collected below the redoxcline of an acidic lignite mine lake. Strain C25 catalysed the oxidation of ferrous iron [Fe(II)] under oxic conditions at 25 °C at a rate of 3.8 mM Fe(II) day(-1) in synthetic medium and 3.0 mM Fe(II) day(-1) in sterilized lake water in the presence of yeast extract, producing the rust-coloured, poorly crystalline mineral schwertmannite [Fe(III) oxyhydroxylsulfate]. During growth, rod-shaped cells of strain C25 formed long filaments, and then aggregated and degraded into shorter fragments, building large cell-mineral aggregates in the late stationary phase. Scanning electron microscopy analysis of cells during the early growth phase revealed that Fe(III)-minerals were formed as single needles on the cell surface, whereas the typical pincushion-like schwertmannite was observed during later growth phases at junctions between the cells, leaving major parts of the cell not encrusted. This directed mechanism of biomineralization at specific locations on the cell surface has not been reported from other acidophilic iron-oxidizing bacteria. Strain C25 was also capable of reducing Fe(III) under micro-oxic conditions which led to a dissolution of the Fe(III)-minerals. Thus, strain C25 appeared to have ecological relevance for both the formation and transformation of the pelagic iron-rich aggregates at oxic/anoxic transition zones in the acidic lignite mine lake.
Collapse
Affiliation(s)
- Jiro F Mori
- Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Shipeng Lu
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Matthias Händel
- Hydrogeology, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Uwe Totsche
- Hydrogeology, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Vasile Vlad Iancu
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Nicolae Tarcea
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Jena, Germany.,Institute of Photonic Technology, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany.,The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Wu X, Sten P, Engblom S, Nowak P, Österholm P, Dopson M. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:215-221. [PMID: 25933291 DOI: 10.1016/j.scitotenv.2015.04.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Potential acid sulfate soils contain reduced iron sulfides that if oxidized, can cause significant environmental damage by releasing large amounts of acid and metals. This study examines metal and acid release as well as the microbial community capable of catalyzing metal sulfide oxidation after treating acid sulfate soil with calcium carbonate (CaCO3) or calcium hydroxide (Ca(OH)2). Leaching tests of acid sulfate soil samples were carried out in the laboratory. The pH of the leachate during the initial flushing with water lay between 3.8 and 4.4 suggesting that the jarosite/schwertmannite equilibrium controls the solution chemistry. However, the pH increased to circa 6 after treatment with CaCO3 suspension and circa 12 after introducing Ca(OH)2 solution. 16S rRNA gene sequences amplified from community DNA extracted from the untreated and both CaCO3 and Ca(OH)2 treated acid sulfate soils were most similar to bacteria (69.1% to 85.7%) and archaea (95.4% to 100%) previously identified from acid and metal contaminated environments. These species included a Thiomonas cuprina-like and an Acidocella-like bacteria as well as a Ferroplasma acidiphilum-like archeon. Although the CaCO3 and Ca(OH)2 treatments did not decrease the proportion of microorganisms capable of accelerating acid and metal release, the chemical effects of the treatments suggested their reduced activity.
Collapse
Affiliation(s)
- Xiaofen Wu
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Pekka Sten
- Energy & Environmental Technology, Vaasa University of Applied Sciences, Vaasa, Finland.
| | - Sten Engblom
- R&D Department, Novia University of Applied Sciences, Vaasa, Finland.
| | - Pawel Nowak
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland.
| | - Peter Österholm
- Department of Geology and Mineralogy, Åbo Akademi University, Åbo, Finland.
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
38
|
Ullrich SR, Poehlein A, Voget S, Hoppert M, Daniel R, Leimbach A, Tischler JS, Schlömann M, Mühling M. Permanent draft genome sequence of Acidiphilium sp. JA12-A1. Stand Genomic Sci 2015; 10:56. [PMID: 26380040 PMCID: PMC4571130 DOI: 10.1186/s40793-015-0040-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/14/2015] [Indexed: 11/26/2022] Open
Abstract
The tenacious association between strains of the heterotrophic alphaproteobacterial genus Acidiphilium and chemolithotrophic iron oxidizing bacteria has long been known. In this context the genome of the heterotroph Acidiphilium sp. JA12-A1, an isolate from an iron oxidizing mixed culture derived from a pilot plant for bioremediation of acid mine drainage, was determined with the aim to reveal metabolic properties that are fundamental for the syntrophic interaction between Acidiphilium sp. JA12-A1 and the co-occurring chemolithoautotrophic iron oxidizer. The genome sequence consists of 4.18 Mbp on 297 contigs and harbors 4015 protein-coding genes and 50 RNA genes. Additionally, the molecular and functional organization of the Acidiphilium sp. JA12-A1 draft genome was compared to those of the close relatives Acidiphilium cryptum JF-5, Acidiphilium multivorum AIU301 and Acidiphilium sp. PM DSM 24941. The comparative genome analysis underlines the close relationship between these strains and the highly similar metabolic potential supports the idea that other Acidiphilium strains play a similar role in various acid mine drainage communities. Nevertheless, in contrast to other closely related strains Acidiphilium sp. JA12-A1 may be able to take up phosphonates as an additional source of phosphor.
Collapse
Affiliation(s)
- Sophie R. Ullrich
- />Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Anja Poehlein
- />Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-Universität Göttingen, Griesebachstr. 8, 37073 Göttingen, Germany
| | - Sonja Voget
- />Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-Universität Göttingen, Griesebachstr. 8, 37073 Göttingen, Germany
| | - Michael Hoppert
- />General Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- />Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-Universität Göttingen, Griesebachstr. 8, 37073 Göttingen, Germany
| | - Andreas Leimbach
- />Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-Universität Göttingen, Griesebachstr. 8, 37073 Göttingen, Germany
| | - Judith S. Tischler
- />Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Michael Schlömann
- />Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Martin Mühling
- />Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| |
Collapse
|
39
|
Genome Sequence of the Acidophilic Ferrous Iron-Oxidizing Isolate Acidithrix ferrooxidans Strain Py-F3, the Proposed Type Strain of the Novel Actinobacterial Genus Acidithrix. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00382-15. [PMID: 25931603 PMCID: PMC4417699 DOI: 10.1128/genomea.00382-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Extremely acidophilic iron-oxidizing Gram-positive bacteria comprise species within the phyla Firmicutes and Actinobacteria. Here, we report the 4.02-Mb draft genome of Acidithrix ferrooxidans Py-F3, which was isolated from a stream draining an abandoned copper mine and proposed as the type species of a new genus of Actinobacteria.
Collapse
|
40
|
Aytar P, Kay CM, Mutlu MB, Çabuk A, Johnson DB. Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5995-6003. [PMID: 25380633 DOI: 10.1007/s11356-014-3789-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The biodiversity of acidophilic prokaryotes in two acidic (pH 2.8-3.05) mine drainage (AMD) sites (Balya and Çan) in Turkey was examined using a combined cultivation-based and cultivation-independent approach. The latter included analyzing microbial diversity using fluorescent in situ hybridization (FISH), terminal restriction enzyme fragment length polymorphism (`T-RFLP), and quantitative PCR (qPCR). Numbers of cultivatable heterotrophic acidophilic bacteria were over an order of magnitude greater than those of chemolithotrophic acidophiles in both AMD ponds examined. Isolates identified as strains of Acidithiobacillus ferrivorans, Acidiphilium organovorum, and Ferrimicrobium acidiphilum were isolated from the Balya AMD pond, and others identified as strains of Leptospirillum ferriphilum, Acidicapsa ligni, and Acidiphilium rubrum from Çan AMD. Other isolates were too distantly related (from analysis of their 16S rRNA genes) to be identified at the species level. Archaeal diversity in the two ponds appeared to be far more limited. T-RFLP and qPCR confirmed the presence of Ferroplasma-like prokaryotes, but no archaea were isolated from the two sites. qPCR generated semiquantitative data for genera of some of the iron-oxidizing acidophiles isolated and/or detected, suggesting the order of abundance was Leptospirillum > Ferroplasma > Acidithiobacillus (Balya AMD) and Ferroplasma > Leptospirillum > Acidithiobacillus (Çan AMD).
Collapse
Affiliation(s)
- Pınar Aytar
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey,
| | | | | | | | | |
Collapse
|
41
|
Jones RM, Johnson DB. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron. Res Microbiol 2015; 166:111-20. [PMID: 25638020 DOI: 10.1016/j.resmic.2015.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
A novel acidophilic member of the phylum Actinobacteria was isolated from an acidic stream draining an abandoned copper mine in north Wales. The isolate (PY-F3) was demonstrated to be a heterotroph that catalyzed the oxidation of ferrous iron (but not of sulfur or hydrogen) under aerobic conditions, and the reduction of ferric iron under micro-aerobic and anaerobic conditions. PY-F3 formed long entangled filaments of cells (>50 μm long) during active growth phases, though these degenerated into smaller fragments and single cells in late stationary phase. Although isolate PY-F3 was not observed to grow below pH 2.0 and 10 °C, harvested biomass was found to oxidize ferrous iron at relatively fast rates at pH 1.5 and 5 °C. Phylogenetic analysis, based on comparisons of 16S rRNA gene sequences, showed that isolate PY-F3 has 91-93% gene similarity to those of the four classified genera and species of acidophilic Actinobacteria, and therefore is a representative of a novel genus. The binomial Acidithrix ferrooxidans is proposed for this new species, with PY-F3 as the designated type strain (=DSM 28176(T), =JCM 19728(T)).
Collapse
Affiliation(s)
- Rose M Jones
- School of Biological Sciences, University of Wales, Bangor, LL57 2UW, UK.
| | - D Barrie Johnson
- School of Biological Sciences, University of Wales, Bangor, LL57 2UW, UK.
| |
Collapse
|
42
|
Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 2015; 91:fiv011. [PMID: 25764459 DOI: 10.1093/femsec/fiv011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment.
Collapse
Affiliation(s)
- Maria Liljeqvist
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Francisco J Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - Sukithar Rajan
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Adam Stell
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Mark Dopson
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| |
Collapse
|
43
|
González C, Yanquepe M, Cardenas JP, Valdes J, Quatrini R, Holmes DS, Dopson M. Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis. Res Microbiol 2014; 165:726-34. [PMID: 25172573 DOI: 10.1016/j.resmic.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/17/2023]
Abstract
Acidophilic microorganisms inhabit low pH environments such as acid mine drainage that is generated when sulfide minerals are exposed to air. The genome sequence of the psychrotolerant Acidithiobacillus ferrivorans SS3 was compared to a metagenome from a low temperature acidic stream dominated by an A. ferrivorans-like strain. Stretches of genomic DNA characterized by few matches to the metagenome, termed 'metagenomic islands', encoded genes associated with metal efflux and pH homeostasis. The metagenomic islands were enriched in mobile elements such as phage proteins, transposases, integrases and in one case, predicted to be flanked by truncated tRNAs. Cus gene clusters predicted to be involved in copper efflux and further Cus-like RND systems were predicted to be located in metagenomic islands and therefore, constitute part of the flexible gene complement of the species. Phylogenetic analysis of Cus clusters showed both lineage specificity within the Acidithiobacillus genus as well as niche specificity associated with an acidic environment. The metagenomic islands also contained a predicted copper efflux P-type ATPase system and a polyphosphate kinase potentially involved in polyphosphate mediated copper resistance. This study identifies genetic variability of low temperature acidophiles that likely reflects metal resistance selective pressures in the copper rich environment.
Collapse
Affiliation(s)
- Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile; Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - María Yanquepe
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Juan Pablo Cardenas
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile.
| | - Raquel Quatrini
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Sweden.
| |
Collapse
|
44
|
Draft Genome Sequence of the Nominated Type Strain of "Ferrovum myxofaciens," an Acidophilic, Iron-Oxidizing Betaproteobacterium. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00834-14. [PMID: 25146142 PMCID: PMC4153492 DOI: 10.1128/genomea.00834-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
“Ferrovum myxofaciens” is an iron-oxidizing betaproteobacterium with widespread distribution in acidic low-temperature environments, such as acid mine drainage streams. Here, we describe the genomic features of this novel acidophile and investigate the relevant metabolic pathways that enable its survival in these environments.
Collapse
|
45
|
Falagán C, Johnson DB. Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 2014; 18:1067-73. [PMID: 25116055 DOI: 10.1007/s00792-014-0684-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
An acidophilic gammaproteobacterium, isolated from a pit lake at an abandoned metal mine in south-west Spain, was shown to be distantly related to all characterized prokaryotes, and to be the first representative of a novel genus and species. Isolate MCF85 is a Gram-negative, non-motile, rod-shaped mesophilic bacterium with a temperature growth optimum of 32-35 °C (range 8-45 °C). It was categorized as a moderate acidophile, growing optimally at pH 3.5-4.0 and between pH 2.5 and 4.5. Under optimum conditions its culture doubling time was around 75 min. Only organic electron donors were used by MCF85, and the isolate was confirmed to be an obligate heterotroph. It grew on a limited range of sugars (hexoses and disaccharides, though not pentoses) and some other small molecular weight organic compounds, and growth was partially or completely inhibited by small concentrations of some aliphatic acids. The acidophile grew in the presence of >100 mM ferrous iron or aluminium, but was more sensitive to some other metals, such as copper. It was also much more tolerant of arsenic (V) than arsenic (III). Isolate MCF85 catalysed the reductive dissolution of the ferric iron mineral schwertmannite when incubated under micro-aerobic or anaerobic conditions, causing the culture media pH to increase. There was no evidence, however, that the acidophile could grow by ferric iron respiration under strictly anoxic conditions. Isolate MCF85 is the designated type strain of the novel species Acidibacter ferrireducens (=DSM 27237(T) = NCCB 100460(T)).
Collapse
Affiliation(s)
- Carmen Falagán
- College of Natural Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, LL57 2UW, UK,
| | | |
Collapse
|
46
|
Microorganisms in subterranean acidic waters within Europe's deepest metal mine. Res Microbiol 2014; 165:705-12. [PMID: 25063488 DOI: 10.1016/j.resmic.2014.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 11/24/2022]
Abstract
The Pyhäsalmi mine, central Finland, has operated as a deep metal mine since 1967. It currently reaches a depth of almost 1500 m, making it the deepest mining operation in Europe. Around 900,000 m(3) of metal-rich, extremely acidic water are pumped out of the mine each year. The near constant air temperature of ∼ 24 °C together with exposure of sulfidic rock surfaces to air and water, have created an environment that is highly suitable for colonization by acidophilic mineral-oxidizing microorganisms. Using a combined cultivation-dependent and molecular approach, indigenous bacteria in waters at two depths within the mine, and of an acid streamer sample were identified and isolated. Iron-oxidizing chemolithotrophs (Acidithiobacillus and Leptospirillum spp., and "Ferrovum myxofaciens" were the most abundant bacteria in mine water samples, whereas the acid streamer community contained a greater proportion of heterotrophic acidophiles (Ferrimicrobium acidiphilum and a gammaproteobacterium related to Metallibacterium scheffleri). The most abundant isolates obtained from both water and streamer samples were all strains of Acidithiobacillus Group IV, a proposed separate species of iron-oxidizing acidithiobacilli that has not yet been classified as such. Archaea were also detected in water and streamer samples using molecular methods, but most were not identified and no isolates were obtained.
Collapse
|
47
|
Wang Y, Yasuda T, Sharmin S, Kanao T, Kamimura K. Analysis of the microbial community in moderately acidic drainage from the Yanahara pyrite mine in Japan. Biosci Biotechnol Biochem 2014; 78:1274-82. [DOI: 10.1080/09168451.2014.915735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Acid rock drainage (ARD) originating from the Yasumi-ishi tunnel near the main tunnel of the Yanahara mine in Japan was characterized to be moderately acidic (pH 4.1) and contained iron at a low concentration (51 mg/L). The composition of the microbial community was determined by sequence analysis of 16S rRNA genes using PCR and denaturing gradient gel electrophoresis. The analysis of the obtained sequences showed their similarity to clones recently detected in other moderately acidic mine drainages. Uncultured bacteria related to Ferrovum- and Gallionella-like clones were dominant in the microbial community. Analyses using specific primers for acidophilic iron- or sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, Leptospirillum spp., Acidithiobacillus caldus, Acidithiobacillus thiooxidans, and Sulfobacillus spp. revealed the absence of these bacteria in the microbial community in ARD from the Yasumi-ishi tunnel. Clones affiliated with a member of the order Thermoplasmatales were detected as the dominant archaea in the ARD microbial population.
Collapse
Affiliation(s)
- Yang Wang
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takashi Yasuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Sultana Sharmin
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Tadayoshi Kanao
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kazuo Kamimura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
48
|
Brantner JS, Haake ZJ, Burwick JE, Menge CM, Hotchkiss ST, Senko JM. Depth-dependent geochemical and microbiological gradients in Fe(III) deposits resulting from coal mine-derived acid mine drainage. Front Microbiol 2014; 5:215. [PMID: 24860562 PMCID: PMC4030175 DOI: 10.3389/fmicb.2014.00215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/23/2014] [Indexed: 02/01/2023] Open
Abstract
We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2.
Collapse
Affiliation(s)
- Justin S Brantner
- Department of Biology, The University of Akron Akron, OH, USA ; Integrated Bioscience Program, The University of Akron Akron, OH, USA
| | - Zachary J Haake
- Department of Geosciences, The University of Akron Akron, OH, USA
| | - John E Burwick
- Department of Geosciences, The University of Akron Akron, OH, USA
| | | | | | - John M Senko
- Department of Biology, The University of Akron Akron, OH, USA ; Integrated Bioscience Program, The University of Akron Akron, OH, USA ; Department of Geosciences, The University of Akron Akron, OH, USA
| |
Collapse
|
49
|
Johnson DB, Hallberg KB, Hedrich S. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens". Appl Environ Microbiol 2014; 80:672-80. [PMID: 24242243 PMCID: PMC3911105 DOI: 10.1128/aem.03230-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022] Open
Abstract
A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria.
Collapse
Affiliation(s)
- D Barrie Johnson
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | | | | |
Collapse
|
50
|
Falagán C, Sánchez-España J, Johnson DB. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiol Ecol 2013; 87:231-43. [PMID: 24102574 DOI: 10.1111/1574-6941.12218] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/01/2022] Open
Abstract
The indigenous microbial communities of two extremely acidic, metal-rich stratified pit lakes, located in the Iberian Pyrite Belt (Spain), were identified, and their roles in mediating transformations of carbon, iron, and sulfur were confirmed. A combined cultivation-based and culture-independent approach was used to elucidate microbial communities at different depths and to examine the physiologies of isolates, which included representatives of at least one novel genus and several species of acidophilic Bacteria. Phosphate availability correlated with redox transformations of iron, and this (rather than solar radiation) dictated where primary production was concentrated. Carbon fixed and released as organic compounds by acidophilic phototrophs acted as electron donors for acidophilic heterotrophic prokaryotes, many of which catalyzed the dissimilatory reduction in ferric iron; the ferrous iron generated was re-oxidized by chemolithotrophic acidophiles. Bacteria that catalyze redox transformations of sulfur were also identified, although these Bacteria appeared to be less abundant than the iron oxidizers/reducers. Primary production and microbial numbers were greatest, and biogeochemical transformation of carbon, iron, and sulfur, most intense, within a zone of c. 8-10 m depth, close to the chemocline, in both pit lakes. Archaea detected in sediments included two Thaumarchaeota clones, indicating that members of this recently described phylum can inhabit extremely acidic environments.
Collapse
Affiliation(s)
- Carmen Falagán
- School of Biological Sciences, Bangor University, Bangor, UK; Instituto Geológico y Minero de España, Madrid, Spain
| | | | | |
Collapse
|